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One-more security assumptions

ò This report was written as handout for the 2025 edition of the self-study PhD course “Cryptographic
Proof Techniques” by Prof. Elena Pagnin at Chalmers University of Technology, Göteborg, Sweden.
It includes theoretical details from cited literature and the formalisation of some personal remarks.

v The current version was updated on 2025-07-11 with feedback received during the presentation.

1 Introduction: on provable security

GAME-BASED PROOFS. We can establish the security of a scheme Π in terms of the goals of an
attacker A and the tools it can access. In game-based security proofs, this is moelled as a security
game: goals are the winning conditions, tools become oracle queries. For instance, a standard
security notion for signature schemes ΠSign is existential unforgeability under chosen message attack
(EUF-CMA), where A has access to a signing oracle OSign and aims at providing a valid message-
signature pair (m∗, σ∗) for a new message m∗.

SECURITY REDUCTIONS. Security claims for signature schemes ΠSign are usually of the form

“If prob is hard, scheme ΠSign is EUF-CMA secure”

where prob is a computational problem believed to be hard to solve. In game-based proofs, such
claims are proved via the counternominal proposition:

“If ΠSign is not EUF-CMA secure, then prob is not hard.”

In other words we show that, with access to a PPT adversary A that breaks the EUF-CMA security
of ΠSign with non-negligible probability ϵA, we are able to exhibit a PPT extractor E able to simulate
an execution of ΠSign to break prob with non-negligible probability ϵE . This success probability,
compared to the best algorithms known to attack prob, allows to set the parameters of the scheme,
so we want the reduction to be as tight as possible.

2 The One-More RSA Inversion assumption

ONE-MORE ONE-WAY FUNCTIONS. One-More forgeries were first formalised by Pointcheval and
Stern in [1]. Intuitively, they wish to capture the attacker capability of querying an oracle before
the challenge even starts. This is done by allowing t interactions with some oracle and then asking
to produce “one more” forgery, the (t+ 1)-th. This later inspired the formal definition of one-more
one-way function, introduced by Bellare et al. in [2] as an interactive game between a challenger
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C and adversary A. The challenger C generates t + 1 inversion challenges. The adversary A can
query the inversion oracle Oinv-f for f in Figure 1, and it wins if it can invert all t challenges while
performing less than t queries to the inversion oracle.

Definition 1 (One-more one-way function [2]). A one-way function f is one-more one-way if it can
be computed in polynomial time with respect to the size of its output, and no PPT adversary A has non-
negligible probability of winning the one-more inversion game (informally described above).

In [2], the authors formalise this definition with the one-way RSA function.

Oinv-f (x)

if y ̸∈ f(X) return ⊥

x← f−1(y)

q ← q + 1

return x

Ochal-f ( )

x←$ X

y ← f(x)

q ← q + 1

return y

Figure 1: On the left, the inversion oracle in the one-more one-way inversion game. On the right,
the challenge oracle in alternative one-more one-way inversion games.

THREE FLAVOURS OF RSA INVERSION. Bellare et al. adapt the notion of one-more one-way func-
tions to the RSA function. Consider the classical RSA assumption, renamed STI-RSA in [2], where
a parameter generation algorithm RsaGen with input the security parameter λ returns N = pq, the
encryption exponent e and the decryption exponent d.

Assumption 2 (RSA Single-Target Inversion [2]). Let RsaGen be the RSA parameter generation algo-
rithm, and let game GameRSA-STI

A,RsaGen be as defined in Figure 2. We say that the RSA Single-Target Inversion
(RSA-STI) problem is hard if, for any PPT adversary A playing GameRSA-STI

A,RsaGen, it holds

AdvRSA-STI
A,RsaGen(λ) := P

[
GameRSA-STI

A,RsaGen(λ) = 1
]
= negl(λ) (1)

This can be generalised by generating m + 1 challenges and allowing the adversary to query an
RSA inversion oracle (Figure 1) at most m times.

Assumption 3 (RSA Known-Target Inversion [2]). Let RsaGen be the RSA parameter generation algo-
rithm and m = m(λ) for λ security parameter. Let game GameRSA-KTI

A,RsaGen be as defined in Figure 2. We say
that the RSA Known-Target Inversion (RSA-KTIm) problem is hard if, for any PPT adversary A playing
GameRSA-KTI

A,RsaGen, it holds

AdvRSA-KTI
A,RsaGen(m,λ) := P

[
GameRSA-KTI

A,RsaGen(m,λ) = 1
]
= negl(λ) (2)

A further generalisation allows the adversaryA to choose which m+1 out of n challenges it wishes
to invert, with m < n. Due to this, we call it “chosen-target”. The adversaryAwill also provide an
injective map π : {1, . . . ,m+ 1} → {1, . . . , n} to denote which m+ 1 challenges yπ(1), . . . , yπ(m+1)

it chose as target.
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Assumption 4 (RSA Chosen-Target inversion [2]). Let RsaGen be the RSA parameter generation al-
gorithm, m = m(λ) and n = n(λ) for λ security parameter. Let game GameRSA-CTI

A,RsaGen be as defined in
Figure 2. We say that the RSA (n,m)-Chosen-Target Inversion (RSA-CTIn,m) problem is hard if, for any
PPT adversary A playing GameRSA-CTI

A,RsaGen, it holds

AdvRSA-CTI
A,RsaGen(n,m, λ) := P

[
GameRSA-CTI

A,RsaGen(n,m, λ) = 1
]
= negl(λ) (3)

GameRSA-STI
A,RsaGen(λ)

(N, e, d)← RsaGen(1λ)

y ←$ ZN ;

x← A(N, e, λ, y)

return 1 if xe = y

return 0

GameRSA-KTI
A,RsaGen(m,λ)

(N, e, d)← RsaGen(1λ)

for i = 1, . . . ,m+ 1

yi ←$ ZN ;

y⃗ ← (y1, . . . , ym+1)

x⃗← AOinv-RSA
(N, e, λ, y⃗)

return 1 if ∀i xe
i = yi and q ≤ m

return 0

GameRSA-CTI
A,RsaGen(n,m, λ)

(N, e, d)← RsaGen(1λ)

for i = 1, . . . , n

yi ←$ ZN ;

y⃗ ← (y1, . . . , yn)

(x1, . . . , xm+1, π)← AOinv-RSA
(N, e, λ, y⃗)

return 1 if ∀i xe
i = yπ(i) and q ≤ m

return 0

Figure 2: Games for the three variants of the RSA assumption: Single-Target Inversion, Known-Target
Inversion, Chosen-Target Inversion. The main differences between the one-more variants, RSA-KTI
and RSA-CTI, are highlighted in grey.

Lemma 5 ([2]). RSA-CTIn,m is hard if and only if RSA-KTIm is hard.

Sketch of proof. Consider a reduction B playing the RSA-CTIn,m game on input y1, . . . , yn, then B
can just run a PPT adversary A winning the RSA-KTIm game on the first m+ 1 points and return
the injective map π(i) = i for i = 1, . . . ,m+ 1.
The other side is harder, we only provide the main idea. Consider a reduction B playing the RSA-
KTIm game on input the target points y1, . . . , ym+1. First, B creates randomised targets y′1, . . . , y′n,
where y′i = y′i(y1, . . . , ym+1), with the property that inverting them allows to invert the original tar-
gets. This is called “reversible embedding”, and requires multiplying the yi elevated by a known
exponent, plus a random (m+ 2)-th element of known inverse to ensure the y′i are uniformly and
independently distributed. Then the reduction B can run some PPT RSA-KTIn,m adversary A,
making at most m oracle queries and returning x′

i = yd
′

i . The reduction builds an exponent matrix
(a la index calculus), which is invertible if its determinant is non-zero, otherwise B returns ⊥. For
a complete proof of this implication, see Sections 3 and 4 of [2].

ALTERNATIVE FORMULATIONS: CHALLENGE ORACLE. Finally, Bellare et al. define the RSA Al-
ternative KTI (RSA-AKTIm) and the RSA Alternative CTI (RSA-ACTIn,m) assumptions. Adversaries
A are not given their challenge points by the challenger C, but they can access a challenge oracle
Ochal-RSA for the RSA function (Figure 1) to dynamically generate them. They prove that the orig-
inal and alternative formulations are equivalent: RSA-AKTIm is hard if and only if RSA-KTIm is
hard, and RSA-ACTIn,m is hard if and only if RSA-CTIn,m is hard. For the proof of equivalence
see Theorems 5.3 and 5.4 in Section 5 of [2].
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3 The One-More Discrete Logarithm assumption

GENERIC GROUP MODEL. The generic group model (GGM) acts as a sanity check for group-based
games, ensuring that the structure of the algorithm itself does not leak information. AdversariesA
only have access to elements of a group (G, · ) as images of an injective handle function Ξ : G→ S
mapping onto some set S without group structure, and to an implicit group computation oracle
OG× to perform the operation (Ξ(g),Ξ(h)) 7→ Ξ(gh).

DISCRETE LOGARITHM. In [3], Diffie and Hellman ponder the possibility of basing what will be
known as public key cryptosystems on problems that are computationally hard to invert. ElGamal
will formalise the Discrete Logarithm assumption in [4].

Assumption 6 (Discrete Logarithm [3, 4]). Let GrGen be a group generation algorithm, and let game
GameDL

A,GrGen be as defined in Figure 3. We say that the Discrete logarithm (DL) problem is hard if, for any
PPT adversary A playing GameDL

A,GrGen, it holds

AdvDL
A,GrGen(λ) := P

[
GameDL

A,GrGen(λ) = 1
]
= negl(λ) (4)

GameDL
A,GrGen(λ)

(G, g, p)← GrGen(1λ)

x←$ Zp, h← gx

y ← A((G, g, p), h)

return 1 if y = x

return 0

Figure 3: Discrete Logarithm game.

ONE-MORE DISCRETE LOGARITHM PROBLEM. First formalised by Bellare et al. [2], this assump-
tion allows access to a discrete logarithm oracle ODL for as many as t queries and then asks A to
return t discrete logarithms plus “one more”, hence the name.

Assumption 7 (One-More Discrete Logarithm [2]). Let GrGen be a group generation algorithm, and
let game GameOMDL

A,GrGen be as defined in Figure 4. We say that the t-One-More Discrete logarithm (OMDLt)
problem is hard if, for any PPT adversary A playing GameOMDL

A,GrGen, it holds

AdvOMDL
A,GrGen(t, λ) := P

[
GameOMDL

A,GrGen(t, λ) = 1
]
= negl(λ) (5)

The security of OMDL in the GGM is a recent result. The first formal proof of this result was by
Coretti et al. [5], later amended and corrected by Bauer et al. in [6]

Lemma 8 ([6]). Under the GGM, for any adversary A playing GameOMDL
A,GrGen, if DL is hard then it holds

AdvOMDL
A,GrGen(t, λ) ≤ negl(λ)

In literature (e.g. [7]) the victory condition q ≤ t is sometimes embedded in the oracle as a check:
if q ≥ t return ⊥. While morally the same, this affects the abort rate in the security proof.
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4 The Algebraic One-More Discrete Logarithm assumption

GGM VS AGM. The algebraic group model (AGM) is close to the GGM, but exploits no group
computation oracle OG×. Instead, it captures the idea that the adversary A knows how it used all
received values g1, . . . , gt to compute its current output h. Whenever A outputs a group element
h, it is required to provide its representation with respect to all previous inputs, i.e. a vector
(α1, . . . , αt) such that

h = gα1
1 . . . gαt

t

ALGEBRAIC ONE-MORE DISCRETE LOGARITHM. The Algebraic One-More Discrete Logarithm
can be seen as a variant of OMDL where the adversaryA behaves algebraically. It was introduced
in [8] by Nick et al. as security assumption for the Schnorr-based multisignature scheme MuSig2.

Assumption 9 (One-More Discrete Logarithm [2]). Let GrGen be a group generation algorithm, and
let game GameAOMDL

A,GrGen be as defined in Figure 4. We say that the Algebraic t-One-More Discrete logarithm
(AOMDLt) problem is hard if, for any PPT adversary A playing GameAOMDL

A,GrGen, it holds

AdvAOMDL
A,GrGen(t, λ) := P

[
GameAOMDL

A,GrGen(t, λ) = 1
]
= negl(λ) (6)

GameOMDL
A,GrGen(t, λ)

(G, g, p)← GrGen(1λ)

q ← 0

for i = 1, . . . , t+ 1

xi ←$ Zp, hi ← gxi

x⃗← (x1, . . . , xt+1)

h⃗← (h1, . . . , ht+1)

y⃗ ← AODL

((G, g, p), h⃗)

return 1 if y⃗ = x⃗

and q ≤ t

return 0

ODL(h)

x← dlog(h)

q ← q + 1

return x

GameAOMDL
A,GrGen(t, λ)

(G, g, p)← GrGen(1λ)

q ← 0

for i = 1, . . . , t+ 1

xi ←$ Zp, hi ← gxi

x⃗← (x1, . . . , xt+1)

h⃗← (h1, . . . , ht+1)

y⃗ ← AODL

((G, g, p), h⃗)

return 1 if y⃗ = x⃗

and q ≤ t

return 0

ODL(h, α, (βi)i=1,...,t+1)

x← α+

t+1∑
i=1

xiβi

q ← q + 1

return x

Figure 4: OMDL and AOMDL games. The main differences are highlighted in grey.

The adversary A only needs to return a representation when querying ODL, so the only difference
from OMDLt is in the oracle, which now requires (an exploits) the representation of h. Remark
how this does not allow A to bypass the oracle ODL, as

dlog(h) = dlog
(
gαhβ1

1 . . . h
βt+1

t+1

)
= dlog

(
gαgx1β1 . . . gxt+1βt+1

)
= α+

t+1∑
i=1

xiβi

and unless it can break DL, A has no knowledge of the xi.
Also notice how requiring the representation of h to be expressed in terms of g, h1, . . . , ht+1 is
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non-restrictive. When the game starts, all group elements known by A are the generator g and
the challenge points h1 = gx1 , . . . , ht+1 = gxt+1 . The AGM implicitly requires A to show how it
operated on known elements to return any new h, therefore a representation is always readily
available and in terms of g, h1, . . . , ht+1.

Lemma 10. If OMDLt is hard, then AOMDLt is also hard.

Proof. Consider a PPT adversary A playing GameAOMDL
GrGen for a group generation algorithm GrGen

and winning with non-negligible probability. We can exhibit a PPT adversary B for GameOMDL
GrGen

(and the same group generation algorithm GrGen) also winning with non-negligible probability
by simply dropping the algebraic representation from all oracle queries.

FALSIFIABILITY. In [9], Gentry and Wichs introduce the notion of falsifiability of a cryptographic
assumption. Their goal is to capture the confidence we have in a problem, with non-falsifiability
implicitly meaning that the problem is hard to reason about.

Definition 11 (Falsifiability [9]). A cryptographic assumption that can be modeled as an interactive game
between a PPT challenger C and an adversary A is falsifiable if, for any adversary A, the challenger C can
decide in PPT if A won the game.

Falsifiable assumptions are e.g. RSA, CDH, DDH, LWE, SVP, DL.

Lemma 12. OMDLt is a non-falsifiable cryptographic assumption.

Proof. A challenger C trying to simulate the discrete oracleODL for an adversaryA cannot do so in
PPT, except if it can already break DL.

Lemma 13. AOMDLt is a falsifiable cryptographic assumption.

Sketch of proof. The game GameAOMDL
A,GrGen of Figure 4 requiresA to provide an algebraic representation

(α, (βi)i=1,...,t) of all queried h relative to the generator g and the challenges h1, . . . , ht+1. This
allows the oracle ODL to answer in PPT by returning α+

∑
i xiβi instead of dlog(h).

5 Use cases

Many protocols consider one-more security assumptions: blind signatures, multisignatures, thresh-
old signatures, identification protocols, etc. We will focus on blind and threshold signatures.

BLIND SIGNATURES: CHAUM. Blind signatures allow users to obtain a signature of a message m
from a signing party without it learning m. Bellare et al. [2] introduce One-More RSA to prove the
security of Chaum’s blind variant of the FDH-RSA signature protocol.

Definition 14 (RSA Single-Target Inversion [2]). Let RsaGen be the RSA parameter generation algo-
rithm, and let game GameRSA-OMF

A,RsaGen be as defined in Figure 5. We say that the blind FDH-RSA signature is
one-more forgery secure if, for any PPT adversary A playing GameRSA-OMF

A,RsaGen , it holds

AdvRSA-OMF
A,RsaGen(λ) := P

[
GameRSA-OMF

A,RsaGen(λ) = 1
]
= negl(λ) (7)
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Blind FDH-RSA

User(N, e,m) Signer(N, d)

r ←$ Z∗
n

m′ ← reH(m) m′

x′
x′ ← (m′)d mod N

x← r−1x′

GameRSA-OMF
A,RsaGen(λ)

(N, e, d)← RsaGen(1λ)

H←$ {f : {0, 1}∗ → Z∗
N}

((m1, x1), . . . , (mm+1, xm+1))← AOinv-RSA
(N, e, λ)

return 1 if m1 ̸= m2 ̸= . . . ̸= mm+1 and

less than m+ 1 queries to Oinv-RSA and

∀i H(mi) ≡ xe
i mod N

return 0

Figure 5: On the left, Chaum’s blind FDH-RSA signature. On the right, its one-more forgery game.

Theorem 15 ([2]). For any forger F attacking the RSA-OMF security of the FDH-RSA blind signature
scheme in Figure 5, there exists a PPT adversary A against the RSA-ACTIn,m assumption such that

AdvRSA-OMF
F,RsaGen(λ) ≤ AdvRSA-ACTI

A,RsaGen (n,m, λ) (8)

Sketch of proof. Consider a forger F able to break the RSA-OMF security of Chaum’s signature. We
can exhibit an adversary A against the RSA-ACTIn,m assumption using F as a subroutine. When
F queries H for H(m), then A queries its challenge oracle and sets H(m) ← Ochal-RSA. When A
queries Oinv-RSA instead, then A truthfully queries its own Oinv-RSA. The adversary will save all
interactions with F in hash, challenge, message, response arrays, and construct π by searching for
element indices. Finally, A will need to adjust for values mi that F returned by itself, i.e. those
such that H(mi) = ⊥ in its array. During the presentation, we will read the proof of Lemma 6.4 of
[2] for a full description of the security proof.

THRESHOLD SIGNATURES: SPARKLE. Threshold signature schemes allow to distribute the sign-
ing authority among n parties so that only subsets of (at least) t of them can sign messages m.
The security of the threshold Schnorr variant Sparkle, by Crites et al. [7], is based on the AOMDL
assumption. An important step is their proof of adaptive threshold EUF-CMA without the forking
lemma; this allows to avoid the exponential tightness loss. Due to a lack of time, we refer inter-
ested readers to [7] for the first version of the article, with a single-game proof, and [10], with a
sequence-of-games proof.

Theorem 16 ([7]). For any forger F attacking the adp-TS-EUF-CMA security of Sparkle threshold signa-
ture scheme, there exists a PPT adversary A against the AOMDLt assumption such that

Advadp-TS-EUF-CMA
F,GrGen (λ, τ = 1) ≤ Advt−AOMDL

A,GrGen (λ) + negl(λ) (9)
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