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Random Self Reducibility

ò This report was written as part of the 2025 edition of the self-study PhD course “Cryptographic Proof
Techniques” by Prof. Elena Pagnin at Chalmers University of Technology, Göteborg, SE.

1 Random-self-reducible functions

Without loss of generality, we can define a decision problem as a set D of binary strings where we
are asked if a given x ∈ {0, 1}∗ lies in D. Similarly, a search problem is a set S of binary strings (x, y)
where given x we are asked to find an y such that (x, y) ∈ S.
▶ Definition 1 A poly-time reduction from problem P1 to problem P2 (P1 ≤p P2) is a poly-time
algorithm transforming any instance x1 of P1 into an instance x2 of P2 such that x1 ∈ P1 if and only if
x2 ∈ P2.
Consider a function f : {0, 1}∗ → {0, 1}∗, whose inputs x have length len(x) = n. We denote by r
a sequence of fair coin tosses, with len(r) = ω(n) for ω(n) = poly(n).
We wish to study reductions running in probabilistic polynomial time ("poly-time"). They will
perform k(n) = poly(n) random queries to f . We consider the following definitions, found for
instance in Feigenbaum and Fortnow [1].
▶ Definition 2 A function f : {0, 1}∗ → {0, 1}∗ is nonadaptively k(n)-random-self-reducible
(nonadaptively k-rsr) if there are two polynomial-time computable functions σ and φ such that

1. for all n and all x ∈ {0, 1}n, for at least 3/4 of all r in {0, 1}ω(n), we can compute f (x) as

f (x) = φ
(
x, r, f (σ(1, x, r)), . . . , f (σ(k, x, r))

)
2. for all n, if r is an uniform random variable, then the random variables σ(i, x1, r) and σ(i, x2, r) are

identically distributed for all {x1, x2} ∈ {0, 1}n and all i = 1, . . . , k.

x φ f (x)

σ f

f

f

Intuitively, f is nonadaptively k-rsr if evaluating f on any size-n instance x can be reduced via
φ to evaluating f on k size-n instances σ(1, x, r), . . . , σ(k, x, r). They are randomised by the same
uniformly random variable r, which models ω(n) fair coin tosses.
Feigenbaum and Fortnow generalise this approach to multiround adaptive strategies.
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▶ Definition 3 A function f : {0, 1}∗ → {0, 1}∗ is adaptively k(n)-random-self-reducible (adap-
tively k-rsr) if there is a poly-time oracle machine φ that, on input x of len(x) = n, produces k(n) rounds
of oracle f -queries yi(x, r) to f , where the i-th query yi might depend on previous queries and answers. The
reduction φ must be such that

1. for all n and all x ∈ {0, 1}n, for at least 3/4 of all r in {0, 1}ω(n), it outputs the correct answer f (x).

2. for all n, if r is chosen uniformly at random, then the random variables yi(x1, r) and yi(x2, r) are
identically distributed for all {x1, x2} ∈ {0, 1}n and all i = 1, . . . , k, except if wrong answers were
given on earlier rounds.

x φ f (x)
f

f

f

The key difference lies in the generation of queries. Nonadaptive k-rsr requires the reduction φ
to generate all oracle queries σ(i, x, r) in parallel, solely based on the input x and the initial ran-
domness r. Adaptive k-rsr allows it to proceed sequentially over k rounds, where the i-th query yi
may depend on y1, . . . , yi−1. This latter approach is for instance better suited when the solution is
found by narrowing the solution space.

An adaptively k(n)-rsr function f is clearly also nonadaptively k(n)-rsr, but the converse was
shown to be false by Feigenbaum et al. [2] with the construction of a set L′′ such that f = χL′′

is adaptively k-rsr. A function f is called poly-rsr if it is adaptively or non-adaptively k-rsr for a
polynomial number of queries k = k(n).

In cryptography, we are interested in the case where f is a function solving a computational prob-
lem P whose hardness is a cryptographic security assumption. This means that finding f (x) for an
instance x of a problem P , which depends on a set of parameters, is considered computationally
challenging. Here n = len(x) can be treated as a security parameter.

2 Rsr problems for classical cryptography

2.1 The Discrete Logarithm problem

▶ Problem 4 (DLOG) Consider a finite cyclic group G = ⟨g⟩ of order n.

– Parameters: a description Γ = (G, g) of the group G.

– Instance: an element h ∈ G.

– Task: find the unique e ∈ Zn such that ge = h.

For a nice analysis of the DLOG problem and its applications, see Joux et al [3]. The following
lemma is often proven without most of the formalism in Theorem 2.
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▶ Lemma 5 The DLOGG,g problem is poly-rsr.

Proof. Given a fixed instance x = h ∈ G, the discrete logarithm problem requires us to find f (x) =
dlog(x). Sample an uniformly random integer r ∈ Zn of length ω(len(x)) = len(x), which is
poly(len(x)), then σ(1, x, r) = hgr behaves as an uniformly random variable in G. Given two
instances x = ge and x̃ = gẽ, consider y = σ(1, x, r) and ỹ = σ(1, x̃, r), then for some arbitrary
z = ga ∈ G and a uniformly random variable r

P[y = z] = P[xgr = z] = P[ge+r = ga]

= P[r = a − e] =
1
n

= P[r = a − ẽ] = P[x̃gr = z]
= P[ỹ = z]

Finally, we exhibit the reduction φ(x, r, f (σ(1, x, r))) = f (σ(1, x, r))− r, which is correct since

φ(x, r, f (σ(1, x, r))) = φ(h, r, f (hgr))

= f (hgr)− r
= (e + r)− r = f (x)

This function satisfies the condition of 2, and the problem is nonadaptive k-rsr for k = 1.

Remark how we exploited the omogeneous properties of f = dlog in f (xgr) = f (x) + r.
Formally, one should mind the distribution D used to sample instances and require that the
σ(i, x, r) are valid instances of the problem. This also implies verifying that they are random vari-
ables of distribution D. We implicitly proved it by verifying P [y = z] = 1/n.

2.2 The RSA Inversion problem
▶ Problem 6 (RSA Inversion) Consider an RSA modulus N = pq with distinct primes p, q, and a
public exponent e such that gcd(e, φ(N)) = 1.

– Parameters: the system description (N, e).
– Instance: an element x ∈ Z∗

N .
– Task: find the unique y ∈ Z∗

N such that ye ≡ x mod N

▶ Lemma 7 The RSAIN,e problem is poly-rsr.

Proof. Given a fixed instance x ∈ Z∗
N , the RSA Inversion problem requires us to find f (x) = y,

the e-th root of x modulo N. Sample an uniformly random integer r ∈ ZN of length ω(len(x)) =
len(x), which is poly(len(x)). Define σ(1, x, r) = xre, this behaves as an uniformly random variable
in ZN . Given two instances x = ye and x̃ = ỹe, define z = σ(1, x, r) and z̃ = σ(1, x̃, r), then for
some arbitrary instance x = ye ∈ Z∗

N and a uniformly random variable r

P[z = x] = P[xre = ye] = P[(yr)e = ye]

= P[r = y/y] =
1

φ(N)

= P[r = y/ỹ] = P[x̃re = ye]

= P[z̃ = x]
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We define the reduction φ(x, r, f (σ(1, x, r))) = f (σ(1, x, r))/r, which is correct since

φ(x, r, f (σ(1, x, r))) = φ(x, r, f (xre))

= yr/r = f (x)

therefore RSA inversion is nonadaptive k-rsr for k = 1.

3 Rsr problems for post-quantum cryptography

3.1 The Endomorphism Ring problem
An elliptic curve is an algebraic variety

E =
{
(x, y) ∈ Fq2 × Fq2 ∪ {O} | y2 = x3 + Ax + B

}
where the discriminant ∆ = −16(4A3 + 27B2) is non-zero. For theoretical reasons1 we focus on
elliptic curves over the field extension Fq2 .
An isogeny is a surjective morphism ψ : E → E′ such that for any P, Q ∈ E we have ψ(P + Q) =
ψ(P) + ψ(Q). Its degree is the degree of ψ as a rational function, and its representation is any data
that encodes the domain, the codomain, the degree, and an algorithm to efficiently evaluate the
image of any point. Isogenies of degree n, also called n-isogenes, form form a graph whose vertices
are elliptic curves and edges are isogenies. See Figure 1 for an example.

Figure 1: The 3-isogeny graph representing the isogeny class of the curves E with j(E) = 607 over F6007. The
different sizes of vertices represent different sizes of endomorphism rings. Michael Meyer, https://doi.
org/10.25972/OPUS-24682, CC BY-SA 4.0.

The endomorphisms ι : E → E of an elliptic curve E form a ring End(E). They include for instance
the "trivial" endomorphisms P 7→ k · P, which act as scalar multiplication by a fixed k. In our case,
End(E) is a four-dimensional Z-module.

The book by Silverman [4] provides a more rigorous introduction to elliptic curves. For the appli-
cations to cryptography and efficient representations, see the survey by Robert [5].

1Fq2 is the smallest field extension of Fq where all the 2-torsion points (points P such that 2P = O) are defined.
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▶ Problem 8 (Endomorphism Ring) Consider the finite field Fq2 .

– Parameters: the field size q.

– Instance: a supersingular elliptic curve E over Fq2 .

– Task: find the endomorphisms generating End(E) as a four-dimensional Z-module.

We will only sketch the proof of the following Lemma, which would require an heavy introduction
to the theory of elliptic curves, isogenies, and efficient representations. Still, it is worth exploring
why it requires relaxing the definition of nonadaptive k-rsr function. This proof is similar to that
of Proposition 7.4 by Le Merdy and Wesolowski [6].
▶ Lemma 9 If we allow for the statistical indistinguishability of the distribution of the random variables
σ(i, x, r) in Theorem 2, EndRingq is poly-rsr.

Sketch of proof. Consider a fixed instance x = E of EndRingq. The random variables σ(i, x, r) sam-
ple an isogeny ψi as follows:

– Via Velu’s formulae [4], we can uniquely characterise any isogeny ψi via its kernel ker(ψi).
The degree deg(ψi) is the order of the points generating ker(ψi).

– Construct a degree-2ℓ isogeny ψi. This is done via a computational trick, which is construct-
ing a degree-2 isogeny and then composing it ℓ times:

ψi = ψ
(2)
i ◦ ψ

(2)
i ◦ · · · ◦ ψ

(2)
i

ℓ times

– The degree-2 isogeny ψ
(2)
i , in turn, is constructed by sampling a basis P1, P2 of the 2-torsion

subgroup E[2], the set of points of order 2 in E.

The output ψi is a random walk on the 2-isogeny graph. We need to sample isogenies of degree
2ℓ, where ℓ is actually ℓ > log2 p2 + ϵ. The Mixing Time Theorem [7, Theorem 11] shows that doing
this for a reasonable choice2 of ε implies that the distribution of ψi in the graph is asymptotically
indistinguishable from the stationary distribution: their statistical distance ∆ converges to zero.
Define the elliptic curve E′

i = σ(i, x, r) = ψi(E). We have that E′
i is a new randomised instance of

EndRingq. The reduction φ, on input the four generators ι′1, ι′2, ι′3, ι′4 of End(E′
i), returns

ιi = ψi ◦ ι′i ◦ ψ̂i

E E′
i

E E′
i

ψi

ιi ι′i

ψ̂i

2Define a function τ(ε, q) = O(log(q)− log(ε)). We need to pick ℓ = ⌈τ(1, 1/q)⌋. See [6, Corollary 2.8, Proposition 7.4].
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where ψ̂i is the dual isogeny of ψi, computable in poly-time. For a non-trivial endomorphism ι′i,
we get a non-trivial ιi.
This procedure has some failure rate, as we could end in a subring R ⊊ End(E), but it can be
proved it satisfies the bound in Theorem 2 for k = 1.

Remark how we should also mind the distribution D sampling EndRing instances, and prove that
the random variables σ(i, x, r) are distributed accordingly. See [6] for more details.

3.2 The Group Action Inverse problem
Consider a multiplicative group G and a set X. Many of the post-quantum security assumptions
in NIST standards and competitors can be modelled with the formalism of group actions.
▶ Definition 10 We say that G acts on X if there exists a map ⋆ : G × X → X such that

– for every x ∈ X, we have e ⋆ x = x, where e is the identity element in G.

– for every g, h ∈ G and every x ∈ X, we have (gh) ⋆ x = g ⋆ (h ⋆ x).

This map ⋆ is called group action.
A group action partitions X into orbits; the orbit associated to x is the set Gx = {g ⋆ x | g ∈ G}.
▶ Definition 11 A group action is transitive if and only if it only induces one orbit on X. In other words,
for any given x, y ∈ X there exists some g ∈ G such that y = g ⋆ x.
For a group action to be suitable for cryptographic use, we require X, G to be finite and the exis-
tence of probabilistic poly-time algorithms performing the following operations:

1. Membership. Given a string g, decide if it represents an element of G. Given a string x,
decide if it represents an element of X.

2. Equality. Given g, h ∈ G, decide if g = h.

3. Random sampling. Sample an element in G with given distribution DG on G.

4. Group operations. Given g, h ∈ G, compute g−1 and gh.

5. Action. Given g ∈ G and x ∈ X, compute g ⋆ x.

6. Representation. Given an element g ∈ G or x ∈ X, return the (not necessarily unique)
representation as string in {0, 1}#G.

▶ Problem 12 (Group Action Inverse) Consider a set X and a group G.

– Parameters: a group action ⋆ of G on X.

– Instance: two elements x, y of the set X.

– Task: find, if any, an element g such that x = g ⋆ y.

Denote by δ(y, x) the element(s) g such that x = g ⋆ y. If the action is transitive, the solution of
GAIP is the unique δ(y, x). The following was formalised by D’Alconzo [8].
▶ Lemma 13 If ⋆ is transitive, GAIPG,X,⋆ is poly-rsr.
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Proof. Consider the fixed instance (x, y) of GAIP. we are asked to find an f (x, y) such that x =
f (x, y) ⋆ y. The function σ(i, x, r) generates two uniformly random group elements gi,x and gi,y,
returning

σ(i, (x, y), r) = (gi,x ⋆ x, gi,y ⋆ y) = (x′, y′)

The outputs of σ are truly uniformly distributed: consider the random variables

(x′, y′) = σ(i, (x, y), r)

(x̃′, ỹ′) = σ(i, (x̃, ỹ), r)

and two z, w ∈ X. If σ samples uniformly random group elements, then

P[(x′, y′) = (z, w)] = P[(gi,x ⋆ x, gi,y ⋆ y) = (z, w)]

= P[gi,x = δ(x, z), gi,y = δ(y, w)]

=
i

|G|2 = P[gi,x̃ = δ(x̃, z), gi,ỹ = δ(ỹ, w)]

= P[(x̃′, ỹ′) = (z, w)]

Finally, we define the function φ as

φ
(
(x, y), r, f (σ(i, (x, y), r))

)
= φ

(
(x, y), r, f (x′, y′)

)
= g−1

i,x · f (x′, y′) · gi,y

x x′

y y′

gi,x

f (x, y) f (x′, y′)

gi,y

The reduction φ is correct with probability 1. In fact, with k = 1,

x = g−1
1,x ⋆ x′ = g−1

1,x ⋆
(

f (x′, y′) ⋆ y′
)
= g−1

1,x ⋆
(

f (x′, y′) ⋆ (g1,y ⋆ y)
)

=
(

g−1
1,x · f (x′, y′) · g1,y

)
⋆ y

A first example is DLOG, which is the action of the group of exponents G = Zn on the multiplica-
tive cyclic group X = ⟨g⟩. Since this action is transitive, we immediately get that DLOG is poly-rsr.
A further and quantum-resistant example is Linear Code Equivalence, the computational problem
behind the code-based signature scheme LESS [9].
▶ Problem 14 (Linear Code Equivalence) Consider linear codes defined over Fq.

– Parameters: code parameters n, k, q.
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– Instance: the generator matrices G, G′ of two (n, k)-codes C, C′.
– Task: find, if any, S ∈ GLk(Fq) and Q ∈ Mn(Fq) such that G′ = SGQ.

This is an instance of Group Action Inversion, where the action

⋆ : G × X −→ X
((S; (α, Q)), M) 7−→ S · α(MQ)

is induced on the set of full-rank k× n matrices by the group G = GLk(Fq)× (Aut(Fq)⋊ Mn(Fq)),
whose elements are a triple g = (S; α, Q) of an invertible matrix S, a field automorphism α, and
a monomial matrix Q. The operation g ⋆ M mixes and scales the columns of M (multiplication
by Q), applies an automorphism (α) and performs a change of basis (multiplication by S). The
non-commutative group operation on G is

g1 · g2 = (S1; (α1, Q1)) · (S2; (α2, Q2)) = (S1S2; (α1 ◦ α2, Q1Q2))

However, we have the following.
▶ Corollary 15 LCE is not poly-rsr.

Proof. The action is not transitive, as two codes with the same parameters n, k but two different
invariants cannot be mapped one into the other. Consider for instance the two generator matrices

G =

(
1 0 1 0
0 1 0 1

)
G′ =

(
1 0 1 1
0 1 1 0

)
over F2. They generate two (4, 2)-linear codes, namely

C = {(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1), (0, 0, 0, 0)}
C′ = {(1, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 1), (0, 0, 0, 0)}

Their minimum distances are d(C) = 2 and d(C′) = 3. The action of an element g such that
C′ = g ⋆C = ϕ(C) would be an isometry, meaning that d(C′) = d(ϕ(C)), which is not the case.

4 Consequences

4.1 One-way functions
Angluin and Lichtenstein in [10] remark how most classical security assumptions are based on
random self-reducible problems: quadratic residuals, RSA inversion, discrete logarithm. Some
we saw in Section 2, and post-quantum ones in Section 3. A suggested reason is that the class of
poly-rsr functions seemingly gives rise to one-way functions.

Abadi et al. [11] consider instance hiding schemes, where a secret instance x is efficiently trans-
formed into a uniformly random instance y such that knowing f (y) permits the recovery of f (x).
This allows users to rely on possibly malicious programs.
For example, in the Discrete Logarithm Problem, finding x in h = gx can be transformed by choos-
ing a random r and querying the solution for h′ = h · gr = gx+r. The resulting solution x′ then
yields x = x′ − r. This mechanism enables verifiable yet private computation of f , as the program
only solves a random-looking problem instance, preserving the confidentiality of x.
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▶ Corollary 16 Since DLOG is nonadaptively 1-rsr, then it is a 1-ihs (instance hiding scheme), meaning
that an instance of DLOG can be hidden by one other instance.
This can be generalised to nonadaptively k(n)-rsr functions using the same φ and σ of Theorem 2.

Further, random-self-reducibility allows reliable use of a flawed program P to evaluate f . This is
similar to an instance hiding scheme, but we are unsure on the correctness of the output of P.
Consider a program P evaluating f that is correct on at least 1/2 of inputs. Compute i randomised
instances yi = σ(i, x, r) from the correct input x. Once the flawed output is obtained, invert the
reduction with φ. By repeating this process multiple times, the correct answer f (x) is likely the
majority result, effectively mitigating the error rate of P . The fault tolerance of this process de-
pends on that of φ in Theorem 2. The computational overhead mainly depends on k and σ.
Blum et al. [12] define this property self-correction.

4.2 Weak instances
A cryptographic protocol is secure only if the underlying mathematical problem is hard to solve for
the vast majority of instances, but average-case hardness can hard to prove for general problems.
However, for a poly-rsr f , it is sufficient to prove worst-case hardness.
▶ Corollary 17 Consider a poly-rsr function f . If an algorithm A correctly solves f (x) for a non-
negligible fraction ρ(n) > 0 of uniformly random length-n inputs x, then we can construct a randomized
algorithm A′ that uses A as a subroutine to correctly evaluate f (x) for all inputs x with high probability.
Intuitively, if an efficient algorithm exists for a non-negligible fraction of inputs, then it is easy
for all inputs. We are interested in the contrapositive: if the function f is worst-case hard (i.e., no
polynomial-time algorithm solves it for every input), then it must also be average-case hard.

The set of weak instances Sweak consists of all x such that f (x) can be computed faster than the
average case. If f is not poly-rsr, an attacker could identify and exploit a small subset of weak keys
to break the system. Having a poly-rsr f ensures that the difficulty of solving a randomly chosen
instance x is on average equivalent to the difficulty of the hardest instance.

(DLOG) This, together with its commutativity (ga · gb = gb · ga), is perhaps behind the wide num-
ber of applications of DLOG [3].

(RSAI) The great discourse on weak RSA instances mostly regards the hardness of integer fac-
torisation, not of the RSA Inversion problem. Also, attacks work on a negligible set of
parameters, which do not affect the hardness of the average instance.

4.3 Computational comlexity & polynomial hierarchy
We can classify decision problems in complexity classes:

– P, all decision problems D that can be solved by a deterministic algorithm in poly-time.

– NP, all decision problems D that can be solved by a non-deterministic algorithm in poly-time.

– coNP, all decision problems D whose complement D = {x | x ̸∈ D} is in NP.
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It is known that P ⊆ NP and P ⊆ coNP. The question of whether P = NP remains the central open
problem in complexity theory.

More generally, for any complexity class C, a problem D is C-hard if every problem in C can be
reduced to D in polynomial time, and if it also lies in C we call it C-complete. This allows to construct
the Polynomial Hierarchy (PH), a chain of complexity classes ΣP

i and ΠP
i defined as

ΣP
0 = P ΠP

0 = P ∆P
0 = P

ΣP
1 = NP ΠP

1 = coNP ∆P
1 = PNP

ΣP
i+1 = NPΣP

i ΠP
i+1 = coNPΣP

i ∆P
i+1 = PΣP

i

Here notation such as NPΣP
i represents oracle access to ΣP

i . The entire hierarchy is defined as the
union of all levels:

PH =
⋃
i≥0

ΣP
i =

⋃
i≥0

ΠP
i

It is known that each level is contained in the next, ΣP
i ⊆ ΣP

i+1. If there exists an integer i such that
ΣP

i = ΣP
i+1, the Polynomial Hierarchy is said to collapse at the i-th level, implying PH = ΣP

i . It is
conjectured that PH does not collapse at any level.

∆P
0 = ΣP

0 = P = ΠP
0 = ∆P

1

NP = ΣP
1

coNP = ΠP
1

PNP = ∆P
2

ΣP
2

ΠP
2

∆P
3

ΣP
3

ΠP
3

. . .

. . .

However, there is a catch.
▶ Theorem 18 ([1]) If an NP-complete function f is adaptively O(log n)-rsr, then the polynomial hier-
archy collapses at the third level.
Most conjecture that NP-complete problems cannot be poly-rsr, as this would imply a significant
collapse in the polynomial hierarchy. Problems such as (the decisional variant of) DLOG lie in
NP∩ coNP and are believed to not be NP-complete. This also holds for the other problems we saw
in Sections 2.1, 2.2, 3.1 and 3.2
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