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summary

Fables begin with “once upon a time”, but number theory begins with “fix a
prime p”. So, unless otherwise specified, consider it fixed.

In Chapter 1 we construct Qp. This must not be thought of as “taking Q in
base p” or “the set of p-adic rationals”, which does not exist in literature.
They are p-adic numbers, an extension of Q different from R introduced by
Kurt Hensel [15]. This is achieved by completing Q under an absolute value
not equivalent to the Euclidean one, yielding an extension different from R.
We can also prove this is the only non-trivial absolute value on Q not
equivalent to it. A great deal can be said about this new ultrametric space:
we will describe the most important properties.

In Chapter 2 we define and study continued fractions in R, along with their
well-known core properties. We will appreciate how they can so nicely
describe rationals and quadratic irrationals (Euler’s and Lagrange’s
theorems), while expanding on some tools that will be useful in the study of
such properties: convergents and linear fractional operators.

In Chapter 3 we will show how hard it is to extend the “usual” algorithm to
Qp. This is due to the vast difference introduced by the p-adic absolute
value. Some properties are lost, some are preserved, some are conjectured.
We will tackle a few of these conjectures: for example, given a continued
fraction algorithm on the field K with input α, is it true that it outputs a
periodic sequence of partial quotients if and only if [K(α) ∶K] = 2 as field
extension? This is true in the usual algorithm for K = R, but does not hold in
general for those we can propose for K = Qp. The most promising ones are
by Polish mathematician J. Browkin: we will study his first, Browkin I.

Lastly, in Appendix A one can find some details on the algorithms used to
provide examples and graphs.
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notation

premise
Z the ring of integers
Q the field of rationals
p a fixed integer prime

Chapter 1
Zp the ring of p-adic integers
Qp the field of p-adic numbers
νp the p-adic valuation
lim←Ði∈I

Ri inverse limit of the rings (Ri)I

∣ ⋅ ∣ a generic norm / absolute value
∣ ⋅ ∣p the p-adic norm / absolute value
∣ ⋅ ∣∞ the Euclidean norm / absolute value
DVR discrete valuation ring

Chapter 2
I index set, either I = {0, 1, . . . , n} or I =N

[a0, b1 ∶ a1, . . . ] general continued fraction of complex (ai)I , (bi)I
[a0, a1, a2, . . . ] canonical continued fraction of partial quotients (ai)I
P set of irrational numbers
Ci i-th convergent of the continued fraction
Lm(⋅) linear fractional operator associated to the matrix m

Chapter 3
P0 convergence of the algorithm in Qp
P1 finiteness of the algorithm for α ∈ Q

P2 periodicity of algorithm output iff α is quadratic irrational
r(⋅) Ruban’s floor function
s(⋅) Browkin’s (first) floor function
t(⋅) Browkin’s (second) floor function
Z [1/p] ring of s-integers
norm(⋅) number theoretical norm
trace(⋅) number theoretical trace

There is a great deal of ambiguity on the term “norm”. In the geometrical or
analytical sense, it is an absolute value on a normed vector space. In a number
theoretical sense, one usually means the field norm or ideal norm. They are
sometimes used interchangeably. We will try to make a clear distinction, but
caveat lector.
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Chapter 1
The field of p-adic numbers

It is an habit of old to view integers in base 10. Although motivated by valid
biological reasons, this choice can be considered rather arbitrary by mathe-
maticians. Sumerians worked in base 60, which is a highly composite number
and simplifies many calculations involving it, and used 10 as sub-base to rep-
resent their sexagesimal digits. They would perhaps consider our base 10
quite naive.
To our credit, base 10 incidentally provides an excellent trade-off between size
of the multiplication table (10 × 10) and length of integer representations. Of
course base 2 has an even smaller multiplication table, but representing the
number “one million” requires twenty digits!

We will start working with bases different from ten, in which case we will
display numbers with red bold digits. For example, in base 5

27 = 1× 52 + 0× 51 + 2× 50 = 1025

183 = 1× 53 + 2× 52 + 1× 51 + 3× 50 = 12135

Following the usual convention for base 10, we will arrange powers of the
base in a decreasing fashion. This is what computer scientists refer to as little
endian in their binary case. Integers from 0 to 9 are called digits, and to main-
tain the parallelism we will refer to values between 0 and p−1 as p-adic digits.

We will start working with prime bases, gradually building up to the con-
struction of the field of p-adic numbers and witnessing how they relate to
some common structures in algebra.
This chapter is an introduction on p-adic numbers roughly arising from per-
sonal remarks on Gouvea [13]. Useful contributions can be also found in
Pomerantz [31] for mathematical analysis in the p-adic setting, Madore [22]
and Conrad [10] for an introduction on p-adic rational numbers and the prop-
erties of their expansions, Schikhof [38] for some results on analysis and topol-
ogy and Serre [40] for results in group theory.

[ 7 of 94 ]



Chapter 1. The field of p-adic numbers

1.1 Representations with non-negative powers
On operations over Z in prime base.

Throughout the following chapter, p is a fixed odd prime unless specified.

While working in base p, one of the most difficult tasks is to actually re-
member the algorithms we were taught back in elementary school. All exam-
ples in this section will consider the prime base p = 11, so our digits will be
0,1,2,3,4,5,6,7,8,9,X with the rule that 1+X = 11 = 10. They can be referred to
as the 11-adic digits.

Problem 1 Consider a fixed prime p. Write integers m as m = ∑+∞i=0 ai pi for
integer coefficients ai of values 0 ≤ ai ≤ p − 1.

Addition is simple, 123+ 34 = 157. We can easily check for correctness1.

123+ 34 = (1× 112 + 2× 111 + 3× 110)+ (3× 111 + 4× 110)

= 1× 112 + 5× 111 + 7× 110 = 157

Multiplication follows similarly, and all usual rules still hold. Negative inte-
gers are harder to study in a way that satisfies Problem 1. Expressing −1 is a
sufficient condition to obtain all of them.

Lemma 1.1 Fix an integer p. Then −1 = ∑+∞i=0 (p − 1)pi.

Sketch of proof. Intuitively, we can escalate a single carry-over to the whole
series.

1+
+∞
∑
i=0
(p − 1)pi = 1+ (p − 1)p0 + (p − 1)p + (p − 1)p2 + (p − 1)p3 + . . .

= (p − 1+ 1)+ (p − 1)p + (p − 1)p2 + (p − 1)p3 + . . .

= (p − 1+ 1)p + (p − 1)p2 + (p − 1)p3 + . . .

= (p − 1+ 1)p2 + (p − 1)p3 + ⋅ ⋅ ⋅ = 0

We will need better tools to construct a formal proof.

It might seem that we swept something under the rug, and that is actually the
case. This series does not converge in the usual sense, but we will see how
that is possible in our setting. For p = 11,

−1 = 10× 110 + 10× 111 + 10× 112 + ⋅ ⋅ ⋅ = . . . XXXXXXXXXX

Remark that due to our notation there are infinitely many digits on the left.
We can express −7 in a way that satisfies Problem 1:

−7 = 7
+∞
∑
i=0
(10)11i =

+∞
∑
i=0
(70)11i =

+∞
∑
i=0
(6× 11+ 4)11i

=
+∞
∑
i=0
(6)11i+1 +

+∞
∑
i=0
(4)11i =

+∞
∑
i=1
(6)11i +

+∞
∑
i=0
(4)11i

=
+∞
∑
i=1
(X)11i + 4 = . . . XXXXXXXXX4

1The amount of mistakes one does in these is perhaps independent from the fixed integer base.
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Chapter 1. The field of p-adic numbers

Since all digits of any y and −y add up to zero, we can prove the following.

Lemma 1.2 Consider y = a0 + a1 p+ a2 p2 + . . . , then −y = b0 + b1 p+ b2 p2 + . . . is
constructed as follows:

(i) ignore all trailing zeroes: these bi are zero

(ii) for the first index k such that ak is non-zero, bk = p − ak

(iii) then we must account for carrying, hence for k′ > k, bk′ = p − 1− ak′

This makes additive inverses easier to handle, and actually proves that the
inverse we found before was correct.

1.2 Representations with negative powers
On operations over Q in prime base.

Recall that in Z division is often2 undefined, and to account for this we need
to work in Q. Similarly, we need a variation of Problem 1 able to account for
“decimal precision”. In base 10 this is done including negative powers of 10.

Problem 2 Consider a fixed prime p. Write rationals r = a/b as r = ∑+∞i=−k ai pi for
integer coefficients ai of values 0 ≤ ai ≤ p − 1, and k such that a−k is non-zero.

Let us start with an example. Consider r = 144/23,

r = 144
23
=

1× p2 + 2× p + 1
2× p + 1

and consider r as a formal series (i.e. we do not particularly care that p = 11
while dividing). The natural strategy is to seek for an expression a0 + a1 p +
a2 p2 + . . . such that

121 = 1+ 2p + 1p2

= (1+ 2p)(a0 + a1 p + a2 p2 + a3 p3 + a4 p4 + . . . )

= a0(1+ 2p)+ a1 p(1+ 2p)+ a2 p2(1+ 2p)+ a3 p3(1+ 2p)+ a4 p4(1+ 2p)+ . . .

= p0(a0)+ p(2a0 + a1)+ p2(2a1 + a2)+ p3(2a2 + a3)+ p4(2a3 + a4)+ . . .

therefore a0 = 1, a1 = 0, a2 = 1, a3 = 9, and

r = . . . 24339101 = 1+ 0p + 1p2 + 9p3 + 3p4 + 3p5 + . . .

Notice how we used p = 11 at some point. This expansion satisfies Problem 1
since the powers of p are all non-negative, but not all rationals do. Consider
s = 144/(23× 11),

s = 144
23× 11

= p−1 144
23
= p−1 (

1× p2 + 2× p + 1
2× p + 1

)

= 1p−1 + 0+ 1p + 9p2 + 3p3 + 3p4 + ⋅ ⋅ ⋅ = . . . 2433910.1

2But not always! For example, one can reasonably write 6 divided by 3 in Z. What is undefined
is division with a non-integral remainder.
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Chapter 1. The field of p-adic numbers

Dividing by a power of p shifts the expansion by one element, so we require a
negative starting index −k. As noted by Madore [22], this is essentially the only
operation that requires a generalisation to Problem 2. It is very convenient to
introduce the set Qp of all sums of powers of p satisfying it.

Definition 1.3 Fix a prime p in Z, the set of p-adic numbers is

Qp =
⎧⎪⎪⎨⎪⎪⎩

x =
+∞
∑

i=−k
ai p

i for 0 ≤ ai ≤ p − 1 and k ∈Z

⎫⎪⎪⎬⎪⎪⎭

and any x ∈ Qp is called p-adic series or p-adic number.

This chapter will prove that this is a field extension of Q, and the inclusion
Q↪ Qp justifies our results. We will need some further tools.

1.3 The p-adic absolute value
On the construction of a new absolute value from algebraic properties of primes

p.

Definition 1.4 Fix a prime p in Z, the p-adic valuation on Z is a function

νp ∶ZÐ→N∪ (+∞)

that associates to any non-zero integer n the unique positive integer νp(n) such
that n = pνp(n)n′ and p ∤ n′, the maximum power of p dividing n. We set by
definition νp(0) = +∞ since every power of p divides 0.

An integer e such that n = pen′ and p ∤ n′ is trivially unique due to unique fac-
torisation in Z. In fact, the p-adic valuation of an integer n is the multiplicity
m of p in the prime factorisation of n. For example

ν11(5) = 0

ν7(294) = ν7(72 × 6) = 2

The p-adic valuation map on Z is a completely additive arithmetic function,
and it can be naturally extended to any x = a/b ∈ Q as νp(x) = νp(a) − νp(b).
This corresponds to the same formula from Definition 1.4 applied on x.

Lemma 1.5 The basic properties of the p-adic valuation on Q are

(i) νp(xy) = νp(x)+ νp(y)

(ii) νp(x + y) ≥min{νp(x), νp(y)}

(iii) νp(x + y) =min{νp(x), νp(y)} if x ≠ y

The proof of these is very simple, just write x and y as powers of primes.
A natural requirement is for p to be prime. We could define a “m-adic valua-
tion” for a composite m, but it would not satisfy these properties.

ν6(12× 3) = ν6(36) = 2
= ν6(12)ν6(3) = 1× 0 = 0
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Chapter 1. The field of p-adic numbers

Definition 1.6 Consider a field K, an absolute value on K is a function

∣ ⋅ ∣ ∶KÐ→ R+

that satisfies the following conditions:

(i) ∣x∣ = 0 if and only if x = 0

(ii) ∣xy∣ = ∣x∣ ∣y∣ for all x, y ∈K

(iii) ∣x + y∣ ≤ ∣x∣+ ∣y∣ for all x, y ∈K

The absolute value is said non-archimedean if

(iv) ∣x + y∣ ≤max{∣x∣, ∣y∣} for all x, y ∈K

Properties from Proposition 1.5 are very similar to some of Definition 1.6:
products became sums and inequalities were reversed, just like with loga-
rithms. In fact, we can exploit the p-adic evaluation on Q to create an absolute
value.

Definition 1.7 The p-adic absolute value on Q is defined as

∣x∣p = p−νp(x)

where ∣0∣p = 0 by definition. We allow by convention that p =∞ so that the usual
Euclidean norm may be denoted as ∣ ⋅ ∣∞.

Theorem 1.8 ∣ ⋅ ∣p is a non-archimedean absolute value on Q.

Proof. Fix a prime integer p. Consider properties (i), (ii), (iii), (iv) of absolute
values. From Proposition 1.5 and Definition 1.7 is easy to see that (i), (ii)
and (iv) hold. What is interesting is that the non-archimedean property (iv)
implies (iii), since max {∣x∣, ∣y∣} ≤ ∣x∣+ ∣y∣. If it was strictly larger, then without
loss of generality ∣x∣ > ∣x∣+ ∣y∣ and ∣y∣ < 0, which is impossible.

A metric space with a non-euclidean distance is called ultrametric space, and
the associated metric is called super-metric.
We just proved that (Q, ∣ ∣p) is ultrametric if we consider dp(x, y) = ∣x − y∣p
distance induced by the absolute p-adic value. This property spawns night-
marish - but nonetheless correct - statements, like the fact that all triangles are
isosceles, or that all points inside a ball are its center, or even worse that all
balls of positive radius in the induced topology are clopen.
The reader might get a taste by realising that for p = 5 the integers 1 and 26
are closer in 5-adic norm than 1 and 2.

What mainly interests us is how this new absolute value impacts the con-
vergence of our p-adic series. This will open a new path for our detour in Qp,
as we will be able to start making comparisons with R.

Lemma 1.9 If ∣r∣p < 1, the series ∑+∞i=0 ri converges to 1
1−r in (Q, ∣ ⋅ ∣p).

Proof. Consider (sn) the sequence of partial sums, sn = ∑n−1
i=0 ri. Then

sn = r0 + ⋅ ⋅ ⋅ + rn−1

rsn = r0 − rn = 1− rn
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Chapter 1. The field of p-adic numbers

thus we get sn(1− r) = 1− rn and sn = 1− rn/1− r. The critical part is noticing that
the limit of rn is 0 for n → +∞. Since ∣rn∣p = ∣r∣p⋯ ∣r∣p is a decreasing product
of n elements, for any m > 0 there exists an N ∈N such that for any n > N we
have ∣rn∣p < m. Thus

+∞
∑
i=0

ri = lim
n→∞

sn = lim
n→∞

n−1
∑
i=0

ri = lim
n→∞

1− rn

1− r
= 1

1− r

This is the first link for the analytical construction of Qp. We already meddled
with this norm, for example with it the series in Lemma 1.1 converges.

Alternative proof of Lemma 1.1. Since ∣p∣p = p−1 < 1,

+ inf
∑
i=0
(p − 1)pi = (p − 1)

+ inf
∑
i=0

pi =
p − 1
1− p

= −1

1.4 Structure of Zp as inverse limit
On the construction of p-adic integers via inverse limit of rings.

Definition 1.10 Fix a prime p in Z, the set of p-adic integers is

Zp = {r =
+∞
∑
i=0

ai p
i for 0 ≤ ai ≤ p − 1}

We saw in Section 1.1 that this set contains all elements of Z. There is a
strong link between Zp and working modulo p. Consider the 11-adic integer
r = 7+ 3p + 1p2 = 7+ 33+ 121 = 161 and write

161 mod 111 = 7 = α1

161 mod 112 = 40 = α2

161 mod 113 = 161 = α3

161 mod 114 = 161 = α4

This is what we usually do in base 10: working with increasing powers of 10
yields more digits of r, eventually stopping. New digits “are zero” for each
extra step. If we set αk = α3 for k ≥ 4, we get a sequence of integers (αn)
representing r in a process called successive approximation.

Definition 1.11 A sequence of integers (αn) such that αn ∈ {0, 1, . . . , pn − 1}
is called p-coherent if for every n ≥ 1 it holds that αn+1 ≡ αn mod pn.

Our sequence is 11-coherent, meaning that αn − αn+1 ∈Z/pnZ. This is a sort of
“measure of closeness”: the last n digits of their p-adic expansion match up.
The sequence describes an element of Zp via successive approximation.

Definition 1.12 Consider a family of rings (Ri)i∈I , with I ⊆ N set of indices,
paired with ring morphisms ψij ∶ Rj → Ri for i ≤ j such that

[ 12 of 94 ]



Chapter 1. The field of p-adic numbers

(i) ψii is the identity on the ring Ri

(ii) ψik = ψij ⋅ψjk for any j ∈ {i, i + 1, . . . , k}

If these are satisfied, the family of rings together with the family of morphisms is
called inverse system of rings and the ψij transition morphisms. We define
the inverse limit of the (inverse system of) rings as

lim←Ð
i∈I

Ri ∶= {x ∈∏
i∈I

Ri ∣ ψij(aj) = ai for i ≤ j in I}

Inverse limits of different kind of structures arise from category theory: see
MacLane [21] for a general introduction and Grillet [14] for an algebraic con-
struction. We are only interested in inverse limits of rings and their properties.

Lemma 1.13 Let R be the limit of the inverse ring system (Ri)i with morphisms
ψij. Then R is a subring of the direct product of the Ri. It has natural projections
πi ∶ R Ð→ Ri such that for i ≤ j we have πi = ψij ○πj, or equivalently the following
diagram commutes.

R

Ri Rj

πjπi

ψij

Proof. R is a subset of the direct product. All operations and natural projec-
tions πi of the direct product are embedded in it. They are well-defined, for
instance r+ s = (α0+ β0, α1+ β1, . . . ) ∈ R because the ψij are ring morphisms and
behave well under these element-wise operations. Proving all ring properties
for R is a simple matter of easy calculations, as

(r + s)+ t = (α0 + β0, α1 + β1, α2 + β2, . . . )+ t
= (α0 + β0 + γ0, α1 + β1 + γ1, α2 + β2 + γ2, . . . )
= r + (β0 + γ0, β1 + γ1, β2 + γ2, . . . ) = r + (s + t)

and we saw that in all steps these are elements of R. Finally πi = ψij ○πj, since

ψij ○πj (r) = ψij (πj(r)) = ψij (αj) = αi = πi(r)

Fix Ri =Z/piZ. Consider the modular valuation maps

ψn ∶ Z/pn
ZÐ→ Z/pn−1

Z

r mod pn z→ r mod pn−1

which are well-defined because pn divides pn+1. Consider also the transition
morphisms

ψij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψi ○ ⋅ ⋅ ⋅ ○ψj if i < j
ψj ○ ⋅ ⋅ ⋅ ○ψi if i > j
identity on Ri else

These satisfy Definition 1.12, and we will investigate R.
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Chapter 1. The field of p-adic numbers

Theorem 1.14 (Zp as inverse limit) There exists a map

φ ∶Zp Ð→
+∞
∏
n=0

Z/pn
Z

r =
+∞
∑
i=0

ai p
i z→ (α0, α1, α2, . . . )

such that φ is a ring isomorphism and (αn)n is a p-coherent sequence.

Proof. Our setting is the following.

Zp

Z/pZ Z/p2Z Z/pkZ Z

φ1
φ2 φk

ψ2

Define αn ≡ r mod pn. These are the terms of a p-coherent sequence, as a
generic αn lies in {0, . . . , pn − 1} with the usual choice of representatives and

αn+1 mod pn = (r mod pn+1) mod pn

= r mod pn = αn mod pn

which can only be done because ψn is well-defined. Moreover, they are unique
by construction.
If we have r, s ∈ Zp with r ≠ s with the same image, then their difference is
zero in every Z/pkZ and the expansion in Zp of r − s is 0 + 0p + 0p2 + . . . so
the map is injective. This is the “gradual approximation” in each ideal pkZp

we described before, but is induced by conditions in each pkZ. The map is
also surjective, since for any given sequence (αn)n we can construct an r ∈ Zp
such that φ(r) = (α1, α2, . . . ). It suffices to proceed as we did in our example.
Finally, the image is an infinite direct product of rings, so it is a ring.

Then Zp is a ring with our φi ∶ Zp → Z/piZ acting as its natural projections.
Operations are those of the direct product of rings. This structure represents
the approximation of r via a p-coherent sequence (αn). On one side we have
an algebraic structure (Zp), on the other side a topological structure. This
theorem acts as a bridge.

Corollary 1.15 Zp is uncountable.

Sketch of proof. Consider Cantor’s diagonal argument. If Zp is countable we
can construct a table where each entry is the coefficient of a power of p.

1 p p2 p3 p4 p5

r0 0 2 1 0 4 7
r1 0 2 5 1 3 6
r2 1 5 6 2 4 5
r3 0 1 3 0 7 4
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Chapter 1. The field of p-adic numbers

Take the diagonal d = 0 + 2p + 6p2 + 0p3 + . . . and construct d′ with i-th entry
different from that of d. For example, if d has a 0 put 1 and else put 0. This
returns d′ = 1+0p+0p2 +1p3 + . . . which cannot be in the table. If it was, d = rk
and the k-th entry would match with the k-th entry of d for some k.

Theorem 1.16 (Universal property of inverse limits) Consider R inverse limit
of the rings Ri paired with the transition morphisms ψij. Then the pair (R, πi)
given by Lemma 1.13 is universal, meaning that any other pair (S, ζi) satisfying
those properties has an unique morphism f ∶ S → R such that the following
diagram commutes.

S

R

Ri Rj

ζi ζ j

f

πjπi

ψij

Proof. See Gouvea [13] for more information.

1.5 Structure of Zp as ring
On the properties of elements and ideals of Zp as integral domain.

Observant readers might have noticed some similarities with formal power
series. If we set X in place of p, with the remark that pX = p2 = X2, Zp can be
seen as the quotient Z [[X]]/(X − p)with all its operations. We will keep referring
to Definition 1.10, but it can be helpful keeping this trick in mind.

Proposition 1.17 An equivalent definition for Zp is

Zp = {r ∈ Qp ∶ ∣r∣p ≤ 1}

The proof is simple, as having p-adic norm less than 1 implies having p-
adic valuation greater than 0. Nevertheless, this result comes in handy while
handling some algebraic properties.

Lemma 1.18 Zp is a ring, and there exists a strict inclusion Z↪Zp acting as
a natural ring homomorphism.

Proof. Zp is a ring under the same operations of the direct product of the rings
Z/pkZ. The inclusion map is given by n ↦ (n mod p, n mod p2, . . . ), and is
strict due to the cardinalities of Z and Zp.

Consider for example Z3. It contains a copy of Z+ obtained expressing posi-
tive integers in base 3, and a copy of Z− obtained multiplying positive integers
by −1. The expansions of all integers are finite. But Z3 also contains some el-
ements of Q, and their expansion is infinite. Consider the periodic

r = 2+ 0p + 1p2 + 0p3 + 1p4 + 0p5 + 1p6 + . . .

= 2+
+∞
∑
k=1

32k = 2+
+∞
∑
k=1

9k = 1+ 1
1− 9

= 1× 8− 1
8

= 7
8
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where the geometric series converges because 9 has 3-adic norm 3−2. We also
know that some numbers cannot be expressed in Z3, for example

s = 7
24
= p−1 7

8
= p−1 (2+ 0p + 1p2 + 0p3 + 1p4 + 0p5 + 1p6 + . . . )

= 2p−1 + 0+ 1p + 0p2 + 1p3 + 0p4 + 1p5 + . . .

We hinted that division by p is essentially the only operation that cannot be
expressed in Zp. This can be described as Zp being a local ring.

Lemma 1.19 Consider the commutative ring Zp.

(i) An element is invertible if and only if it has unitary p-adic norm.

(ii) Any r ∈Zp can be written as r = upk for some k ≥ 0 and u ∈Zp invertible.

(iii) Zp is a principal ideal domain of Krull dimension one.

(iv) Zp is a local ring whose unique maximal ideal is (p) = {x ∈ Qp ∶ ∣r∣p < 1}.

Proof. Property (i). If x is invertible then ∣rr−1∣p = ∣r∣p∣r−1∣p = 1 and by definition
the norm of any r in Zp is at most 1. If r has unitary norm then p does not
divide r and they are relatively prime. There exist two integers x,y such that
rx + py = 1, and

(xr)−1 = 1
1− py

=
+∞
∑
i=0
(py)i = 1+ yp + y2 p2 + y3 p3 = . . .

r ( x
1− py

) = r + (ry)p + (ry2)p2 + (ry3)p3 + (ry4)p4 = rx
1− py

= 1

where the geometric series converges because νp(yp) ≥ 1 and ∣yp∣p ≤ p−1 < 1.

Property (ii). If ∣r∣p = p−k, then pk divides r and u = r/pk has unitary norm.

Property (iii). We first prove that all ideals are those generated by powers
of p. From property (i) we know that an r ∈ Zp is an unit if and only if
r = a0 + a1 p + a2 p2 + . . . with a0 ≠ 0. Remark that subsets of the form (pk) are
ideals, and any ideal containing an element of unitary norm is Zp itself. These
two facts prove that (p) is a maximal ideal, since every element outside of it is
invertible. Any maximal ideal has to satisfy this property, so (p) is the unique
maximal ideal. Consider now a generic proper ideal I. Pick the smallest k
such that I ⊆ (pk) and I /⊆ (pk+1), which must exist since I ⊆ (p). We have
elements r ∈ I not contained in (pk+1), and they can be written as r = spk for
s /∣ p. This means s has norm 1 and is invertible, so rs−1 = pk and (pk) ⊆ I. We
just proved that all ideals have form (pk) for some k, thus they form a chain
of inclusions

Zp = (1) ⊃ (p) ⊃ (p2) ⊃ (p3) ⊃ (p4) ⊃ ⋅ ⋅ ⋅ ⊃ (pk) ⊃ . . .

The unique non-trivial maximal ideal is the one generated by p. It is also the
only non-trivial prime ideal: for any other generator pk the quotient Zp/(pk

) is
not an integral domain. For example in Zp/(p2

) we have (0 + 1p)(0 + 1p) ≡ 0,

[ 16 of 94 ]



Chapter 1. The field of p-adic numbers

and in general we just consider p ⋅ pk−1 ≡ 0. Hence the Krull dimension of Zp

is one. Of course Zp is a domain, being a subring of the field3 Qp.

Property (iv). We already proved that (p) is the unique maximal ideal of Zp.
A commutative ring with an unique maximal ideal is local, and in particular
Zp is a local domain.

If x − y ∈ (pk), they are “close” in p-adic norm. And if x − y ∈ (pk+1) ⊂ (pk),
they are even closer. The intersection of all ideals is the null ideal (0), so if this
holds for all k we get x = y. Since a discrete valuation ring is a principal ideal
domain with exactly one non-trivial maximal ideal, we have the following.

Theorem 1.20 Zp is a discrete valuation ring (DVR).

One of the equivalent definitions of DVR requires a discrete valuation function
on the ring, which would be the p-adic valuation. We could derive the same
theory from the perspective of commutative algebra and discrete valuations.

Definition 1.21 (Atiyah and MacDonald [20], page 94) Let K be a field.
A discrete valuation on K is a mapping ν ∶ K∗ →Z such that

(i) ν(xy) = ν(x)+ ν(y), i.e. ν is an homomorphism,

(ii) nu(x + y) ≥min [ν(x), ν(y)].

The set {x ∈ K∗ ∣ ν(x) ≥ 0} ∪ {0} is a ring, called the valuation ring of ν. It is
sometimes convenient to extend ν to the whole of K by putting ν(0) = +∞.

Proposition 1.22 (Atiyah and MacDonald [20], Proposition 9.2) Let A be a
Noetherian local domain of (Krull) dimension one, m its maximal ideal, k = A/m
its residue field. Then the following are equivalent:

(i) A is a discrete valuation ring,

(ii) A is integrally closed,

(iii) m is a principal ideal.

Lemma 1.19 states that we are under these assumptions, so (i) and (iii) are
equivalent. This proves Theorem 1.20. The theory of p-adic integers can be
constructed from this, and we will hint at the procedure in Section 3.11.

1.6 Structure of Q as metric space
On norms over rational numbers and the completion of Q.

We have a good understanding of Zp, but p-adic numbers, much like real
numbers, rely on results from topology. That would require working on topo-
logical spaces and is not really worth getting into. We are still interested in
the main results, so let us start from Q.

Theorem 1.23 (Ostrowski) Any non-trivial absolute value on Q is equivalent
to the Euclidian absolute value ∣ ⋅ ∣∞ or the p-adic absolute value ∣ ⋅ ∣p.

3It is true that Qp is a field, and we will show it independently from this. Zp is presented
before Qp just for ease of explanation.
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Proof. An excellent proof can be found in Schikhof’s book [38].

The trivial absolute value is ∣x∣0 = 0 if x = 0 and ∣x∣0 = 1 otherwise. It is worth
to mention a few points that arise comparing the proofs in Schikhof [38] and
Gouvea [13].

(i) The proof separates the case of archimedean and non archimedean norm.
The first is topologically equivalent to ∣ ⋅ ∣∞, the latter to some ∣ ⋅ ∣p.

(ii) For ∣ ⋅ ∣p, p must be prime. We already know there could possibly be
zerodivisors otherwise. See Richeson [34] for more.

(iii) The absolute value ∣ ⋅ ∣p gives information on the prime factorisation,
while ∣ ⋅ ∣∞ gives information on the sign.

From Theorem 1.14, we understood that dealing with elements of Zp as se-
quences is easier. A similar theory can be extended to the elements of Qp.

Definition 1.24 A sequence (xn) over a metric space (X, d) is called Cauchy
if for any ε > 0 there exists an N such that d(xn − xm) < ε for all n, m > N. The set
X is called complete with respect to d if every Cauchy sequence of elements
in X has limit in X.

If the metric d is induced by a norm, we usually write it in place of d. It is
well-known that (R, ∣ ⋅ ∣∞) is complete. R is actually the smallest field with
an inclusion Q ↪ R completing Q under ∣ ⋅ ∣∞. We might wonder whether
Q is complete with respect to ∣ ⋅ ∣p instead. This is not always the case: with
∣ ⋅ ∣0 all Cauchy sequences are eventually bounded by ∣xn − xm∣0 < ε, implying
∣xn − xm∣0 = 0 and xn = xm. They are stuck in x, which will be their limit.
First, remark that we are in a non-archimedean metric space.

Lemma 1.25 If ∣ ⋅ ∣ is a non-archimedean absolute value on X, a sequence
(xn) of elements of X is Cauchy if and only if

lim
n→+∞

∣xn+1 − xn∣ = 0

Proof. If the sequence is Cauchy, the result is immediate.
Consider on the other hand xm and xn (m > n) from Definition 1.24, m = n + r,

∣xm − xn∣ = ∣xn+r − xn+r−1 + xn+r−1 − ⋅ ⋅ ⋅ + xn+1 + xn∣
≤max{∣xn+r − xn+r−1∣, . . . , ∣xn+1 − xn∣}→ 0

Theorem 1.26 The field of rational numbers Q is not complete with respect to
any of its non-trivial absolute values.

Sketch of proof. We already know it for ∣ ⋅ ∣∞. For ∣ ⋅ ∣p, we can construct an
adequate Cauchy sequence. Suppose p is odd, take an integer α such that

(i) α is not a square in Q

(ii) p does not divide a

(iii) α is a quadratic residue modulo p
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This always exists, consider any perfect square integer and add a suitable
multiple of p. Consider now α0 solution of α2

0 ≡ α mod p. Mahler [23] and
Gouvea [13], both citing Dieudonnè [11], it is proved that if p ≠ 2 we can
iteratively take the next αn such that

αn ≡ αn−1 mod pn

α2
n ≡ α mod pn+1

Since ∣αn+1 − αn∣p = ∣kpn+1∣p ≤ p−(n+1) tends to zero, by Lemma 1.25 (αn) is
Cauchy. But the same reasoning gives ∣αn+1 − α∣p = ∣kpn+1∣p ≤ p−(n+1) so the
limit in Q would be a square root of α, which does not exist by construction.
For p = 2, we do the same but with αcubic root of 3. See Gouvea [13].

It makes sense to try completing Q with respect to ∣ ⋅ ∣p. We will force it to
contain all limits of Cauchy sequences of elements in Q. This will also be a
completion with respect to all non-archimedean absolute values, since due to
Ostrowski’s theorem they are equivalent to one of the ∣ ⋅ ∣p.

1.7 Analytical construction of Qp

On the completion of Q with p-adic norms. Construction and first properties.

Lemma 1.27 Consider a non-archimedean absolute value ∣ ⋅ ∣p on Q and define
Cp (Q) = {(xn) Cauchy sequence in (Q, ∣ ⋅ ∣p)}. Then Cp (Q) is a commutative
ring with unity with the usual operations

(αn)+ (βn) = (αn + βn)
(αn) ⋅ (βn) = (αn ⋅ βn)

Proof. Consider Lemma 1.25 for Cauchy sequences on non-archimedean norms,

∣αn+1βn+1 − αnβn∣p = ∣αn+1βn+1 − αn+1βn + αn+1βn − αnβn∣p
= ∣αn+1 (βn+1 − βn)+ βn (αn+1 − αn)∣p
≤max{∣αn+1∣p ∣βn+1 − βn∣p , ∣βn∣p ∣αn+1 − αn∣p}Ð→ 0

∣(αn+1 + βn+1)− (αn + βn)∣p = ∣(αn+1 − αn)+ (βn+1 − βn)∣p
≤max{∣αn+1 − αn∣p , ∣βn+1 − βn∣p}Ð→ 0

Lemma 1.28 Define M = {(αn) ∶ xn → 0} set of sequences that tend to 0 in
(Q, ∣ ⋅ ∣p),M is a maximal ideal of Cp(Q).

Proof. This requires some arguments from analysis, see Gouvea [13].

Theorem 1.29 Consider Qp as the quotient of rings

Qp = Cp(Q)/M

(i) This construction is equivalent to Definition 1.3.

(ii) The p-adic absolute value on Q naturally extends to Qp.
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(iii) Qp is a field, and there exists a strict inclusion Q↪ Qp acting as a natural
field homomorphism.

(iv) Qp is complete with respect to the p-adic norm.

Sketch of proof. Point (i) is proved like we did for Theorem 1.14.
Point (ii) is easy if we consider any α ∈ Qp as the limit of a Cauchy se-
quence (αn) and ∣α∣p as the limit of ∣αn∣p, which converges by the same non-
archimedean argument we exploited to prove Lemma 1.27.
Point (iii) follows immediately from the equivalent construction as quotient
by a maximal ideal4. The field homomorphism associates to any x ∈ Q the
sequence of terms αn = α, which is Cauchy and only depends on x.
Proof of (iv) requires a multi-step approach and we leave it out.
See Gouvea [13] for more details.

Corollary 1.30 Considering α ∈ Qp as a series of powers of p, the lowest
index k such that ak ≠ 0 is νp(α).

An interesting remark on the construction of Qp is that it somewhat resembles
that of R, but vastly differs due to the choice of a non-archimedean absolute
value. Ostrowski’s Theorem 1.23 proves that any non-trivial non-archimedean
absolute value is equivalent to a ∣ ⋅ ∣p, so the two families of completions5 are
R and Qp. In its extravagant fashion, Qp mimics the behaviour of R.

(i) We are used to see elements of R in base 10:

x = an an−1 . . . a1 a0 . a−1a−2a−3 . . . a−k . . .

This kind of expansion is called left-tailed, as it is (eventually) finite on
the left and infinite on the right. This is an arbitrary choice, as we can
easily make them right-tailed:

1492.37 = 7× 10−2 + 3× 10−1 + 2× 100 + 9× 101 + 4× 102 + 1× 104

The same can be said for Qp.

(ii) Taking the quotient byM, we forced all sequences (αn) and (βn) whose
difference (αn)− (βn) tends to zero to be identified. This is also done in
real analysis, and is usually stated as “changing a finite number of term
does not affect the behaviour of a sequence”.

The metric space Qp offers a few additional nightmares mainly due to the p-
adic norm. Some are counter-intuitive but perfectly sound. We can conclude
with a few considerations to further this claim and there will be more in the
next section.

Proposition 1.31 Qp is uncountable.

We already know that Zp is uncountable and Zp ⊂ Qp, so this should be no
surprise. The cardinal number of Qp is greater than ℵ0, exactly like R.

Proposition 1.32 If p and q are distinct primes, Qp is not isomorphic to Qq.
4It is of course a general fact that the completion of a field K with respect to some absolute

value embeds the original K as a subfield.
5Plus Q itself for the trivial absolute value, which is not very interesting.
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Sketch of proof. This requires some notions of group theory, see Serre’s book
[40]. The fundamental issue is that ∣q∣p = 1, as ∣q∣p = pνp(q) ≠ 1 would imply
p ∣ q, hence by Lemma 1.19 we know q is an unit in Zp but not in Zq. This of
course generalises to all other units, and finally to the group of units.

Lemma 1.33 Zp is the completion of Z under p-adic absolute value.

Proof. Consider (αn) sequence of integers, by definition they all have p-adic
absolute value ∣αn∣p ≤ 1. Consider α their limit, we know it lies in Qp since
Z ⊂ Q. Pick an xn such that ∣α − αn∣p < 1, which exists since x is their limit.
Then α is a p-adic integer, since

∣α∣p = ∣αn − (α − αn)∣p ≤max{∣αn∣p, ∣α − αn∣p} ≤ 1

1.8 Structure of Qp as field
On the algebraic properties of the field of p-adic numbers and its elements.

Relations with p-adic integers.

Remark that Qp is a local field which is an infinite extension of Q. It contains
a copy of Z, so the ring morphism Z→ Qp is the inclusion and its kernel is 0,
meaning that Qp has characteristic zero. It is only fair to wonder whether Qp
is a number field or not.

Definition 1.34 A field K is called (algebraic) number field if it is an exten-
sion of Q of finite degree, i.e. it is a field containing Q and a finite-dimensional
vector Q-space.

Proposition 1.35 The field of p-adic numbers Qp is not a number field.

Proof. Assume the extension is finite and algebraic of degree k, with B basis
for Qp over Q. Since Q is infinite countable, Q-linear combinations of elements
of B can express a countable amount of elements. But Qp is uncountable.

With a number field, e.g. Q[
√

3], we would usually proceed describing its
ring of integers. Luckily that theory can be generalised.

Definition 1.36 The ring of integers over a non-archimedean local field
(K, ∣ ⋅ ∣) is the set of elements with absolute value ∣k∣ ≤ 1.

OK = {k ∈K ∶ ∣k∣ ≤ 1}

Then OK is a ring with respect to the same operations of K: 0 and 1 lie in OK,
and with the strict triangle inequality of Definition 1.6

∣k1 + k2∣ ≤max{∣k1∣, ∣k2∣} ≤ 1
∣k1k2∣ ≤ ∣k1∣ ∣k2∣ ≤ 1

Lemma 1.37 The ring of integers of the field Qp is Zp.
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This justifies the name of Zp and “p-adic integers”, which arise from a com-
parison with the integers of number fields.
We also know that Qp properly contains Zp. With the equivalence relation

(a, n) ∼ (b, m) ⇐⇒ am = bn

on Zp, the quotient Zp ×Zp/∼ with the usual fractionary operations is Frac(Zp).
We represent its elements as a

m .

Theorem 1.38 The field of fractions Frac(Zp) of the ring Zp is Qp.

Proof. An element in Frac(Zp) has form r
s for r, s ∈ Zp. From point (ii) of

Lemma 1.19 we know that s = upk for u invertible in Zp and k ≥ 0, therefore

r
s
= r

upk =
u−1r

pk =
∑+∞j=0 aj pj

pk =
+∞
∑
j=0

aj p
(j−k) =

+∞
∑

i=−k
ai+k pi

where we expanded the p- adic integer u−1r. Given an element of Qp we can
proceed backwards to obtain an element of Frac(Zp).

This can be seen as the localisation of Zp at the subring of its non-zerodivisors,
which is usually defined as a total quotient ring. Remark that Zp is an inte-
gral domain.
We can generalise a previous lemma.

Theorem 1.39 Any r ∈ Qp can be written as r = upe where u is a p-adic integer
of unitary norm.

Proof. If ∣r∣p = p−e ≠ 1, then pe divides r and we can write u = r/pe. By definition
no non-trivial power of p can divide u, which has unitary norm. Moreover u
lies in Zp by defnition of Zp.

Proposition 1.40 Qp is not algebraically closed. The algebraic closure Qp
has infinite degree over Q and is not complete.

Proof. See for example Schikhof [38], which exploits Baire’s theorem [3].

Hence Qp has infinitely many inequivalent proper extensions, unlike R which
is not closed but has a single proper extension C ≃ R[i] complete and of
degree two. As a final example and warning, consider the following.

Proposition 1.41 Qp is an unordered field.

Sketch of proof. If we assume that Qp contains a square root of 1− p, which we
will prove later with Hensel’s lemma, we can write in Qp

(1− p)× 12 + 1× (
√

1− p)2 = 0

and from Rajwade’s book [32] we know that if a null weighted sum of squares
has non-zero weights then the field is unordered.

This of course breaks most approaches to p-adic numbers. For instance, they
cannot be constructed with a Dedekind-like approach to rationals.
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1.9 Rational numbers in Qp

On the expression of rational numbers as p-adic numbers. Relation with
periodic expansions.

We can concede ourselves the luxury of a brief excursion in this new exotic
space. Theorem 1.29 says that Q is somewhat contained in Qp, not per se but
as image of the inclusion map. So of course we do not expect Qp to contain
exactly Q, only some sequences representing it. In a previous example we
showed that r = 2 + 0p + 1p2 + 0p3 + 1p4 + 0p5 + 1p6 + ⋅ ⋅ ⋅ = 7/8 in Q3. It is no
coincidence that the digits of r eventually repeat.

Definition 1.42 A sequence (an) is said purely periodic (of period r), or
purely periodic (of period k), if for any n we have an+k = an. Sometimes in the
definition the r is dropped. The sequence is said (eventually) periodic (of
period k) if it is purely periodic after ignoring some finite number of terms at
the beginning.

The periodic behaviour of 7/8 in Q3 is strictly tied to its value in Z. A nice
feature of Qp is that one can exchange the negative sign for a different right-
tailed expansion. It is not hard to prove that s = −r = 1 + 2p + 1p2 + 2p3 + . . . .
We will give some results by Conrad [10] that will get us used to periodicity
in Qp.

Theorem 1.43 Consider r a rational number with unitary p-adic absolute
value. The following are equivalent

(i) r has a periodic expansion in Qp

(ii) r ∈ [−1, 0) in Q

Proof. Assume (i). Then νp(r) = 0, meaning that the expansion of period k is

r = n0 + n1 p1 + n2 p2 + ⋅ ⋅ ⋅ + nk−1 pk−1 + n0 pk + n1 pk+1 + . . .

= (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ pk (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ p2k (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ . . .

= (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1) (1+ pk + p2k + p3k + . . . )

=
+∞
∑
i=0
(n0 + ⋅ ⋅ ⋅ + nk−1 pk−1) pik =

n0 + ⋅ ⋅ ⋅ + nk−1 pk−1

1− pk

Remark that n0 ≠ 0 because the valuation of r is zero. This means that due
to the choice of representatives the numerator is an integer between 1 and
(p − 1)+ (p − 1)p + ⋅ ⋅ ⋅ + (p − 1)pk−1 = pk − 1, so (ii) follows.
Assume (ii) instead. We can write r = a/b with a < 0 and b ≥ 1 both not divisible
by p and coprime. Since gcd(p, b) = 1 there is some k such that6 pk ≡ 1 mod b,
so pk = 1+ bb′ for some positive integer b′ and

r = a
b
= ab′

bb′
= −ab′

1− pk

6This procedure does not depend on the minimality of k, which only ensures that the length
of the periodic part of the expansion is minimal.
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Since a < 0 and b′ > 0, −1 ≤ − ab′/1− pk < 0, then 0 < −ab ≤ pk − 1 and −ab has at
most k digits in base p, so −ab′ = n0 + ⋅ ⋅ ⋅ + nk−1 pk−1 for some ni.

r = a
b
= −ab′

1− pk =
n0 + ⋅ ⋅ ⋅ + nk−1 pk−1

1− pk =
+∞
∑
i=0
(n0 + ⋅ ⋅ ⋅ + nk−1 pk−1) pik

= (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1) (1+ pk + p2k + p3k + . . . )

= (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ pk (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ p2k (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ . . .

= n0 + n1 p1 + n2 p2 + ⋅ ⋅ ⋅ + nk−1 pk−1 + n0 pk + n1 pk+1 + . . .

We can see that −7/8 in Q satisfies these hypotheses, and since (ii) holds then its
expansion in Q3 must be periodic. The theorem also gives a way to calculate
its expansion. Since a = −7 and b = 8, the smallest k such that 3k ≡ 1 mod 8 is
k = 2, with 32 = 1× 8+ 1, we know that k = 2 and b′ = 1. Finally,

s = −7
8
= −7× 1

8× 1
= − 7

p2 − 1
= 7

1− p2 =
1+ 2p
1− p2 =

+∞
∑
i=0
(1+ 2p)32k

= (1+ 2p) (1+ p2 + p4 + . . . ) = (1+ 2p)+ (1+ 2p) p2 + (1+ 2p) p4 + . . .

This theorem must first be generalised to work with r = −s = 7/8.

Theorem 1.44 Any number in Qp has an eventually periodic expansion if and
only if is a rational. Here we allow for integers to be considered periodic7.

Proof. Step 1. Any periodic expansion x = m0m1 . . . mj−1n0 . . . nk−1 represents a
rational, where j is the pre-period. A purely periodic expansion would have
j = 0. This represents a rational number for the same reasoning as before.

x = m0m1 . . . mj−1n0 . . . nk−1

= m0 + ⋅ ⋅ ⋅ +mj−1 pj−1 + pj (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ pj+k (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1)+ . . .

= (m0 + ⋅ ⋅ ⋅ +mj−1 pj−1)+ pj (n0 + ⋅ ⋅ ⋅ + nk−1 pk−1) (1+ pk + p2k + p3k + . . . )

= (m0 + ⋅ ⋅ ⋅ +mj−1 pj−1)+ pj
+∞
∑
i=0
(n0 + ⋅ ⋅ ⋅ + nk−1 pk−1) pik

= (m0 + ⋅ ⋅ ⋅ +mj−1 pj−1)+ pj n0 + ⋅ ⋅ ⋅ + nk−1 pk−1

1− pk

Step 2. We can work in Zp without loss of generality: if x /∈ Zp, define y = pex
with a large enough e and work on y. Then divide by pe, which is just a shift.
In other words, we extend our definition of periodicity to account for shifts of
the sequence. They do not affect its behaviour.

Step 3. Consider the converse for a strictly negative integer x. Pick a j such
that 0 < −x < pj and write y = −x. We have x = −y = (pj − y)− pj where pj − y is

7Remark that an integer in Qp is eventually finite. Due to Definition 1.42, this is a periodic
expansion with repeating zeroes
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a positive integer not greater than pj, so it has j digits m0, . . . , mj−1 in base p.
Then x is eventually periodic,

x =
j−1

∑
i=0

mi p
i − pj =

j−1

∑
i=0

mi p
i +
+∞
∑
i=j
(p − 1)pi

Step 4. Consider the converse for a negative rational x in (−1, 0) of non-unitary
p-adic norm and e = νp(x) ≠ 0 lying in Zp. We already know that this holds
for negative rationals in (−1, 0) of unitary norm, so we can factor out p from
x and get y = x/pe rational of unitary absolute value lying in (−1/pe, 0) ⊂ (−1, 0).
Since y has a purely periodic expansion in Qp, x also has one. They have the
same periodic part, just shifted right by e digits.

Step 5. Consider the converse for a negative rational less than -1 and not
in Z lying in Zp. We can still find two consecutive integers such that −N − 1 <
x < −N, so we have that −1 < x +N < 0. The expansion of x +N is periodic due
to step 3, but it could be eventually periodic depending on νp(x+N). In short,
the expansion has form x + N = a0 + a1 p + a2 p2 + . . . and becomes arbitrarily
large8, so we eventually find a j such that

a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ + aj−1 pj−1 > N

Pick the smallest such j, aj is non-zero.

x +N = (a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ + aj−1 pj−1)+
+∞
∑
i=j

ai p
i

x = (a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ + aj−1 pj−1 −N)+
+∞
∑
i=j

ai p
i

Now we need to tweak it a little. The part between brackets is a positive
integer upper-bounded by pj − 1 by construction, so it can be written in base
p and has at most j digits. Finally, we get

x = (b0 + b1 p + b2 p2 + ⋅ ⋅ ⋅ + bj−1 pj−1)+
+∞
∑
i=j

ai p
i

which is still eventually periodic because the right part is unchanged.

Step 6. If x is positive, we can use a previous case on y = −x. By multiplying for
−1, which is trivially periodic, we get an eventually periodic expansion.

We already remarked that the proof of Theorem 1.43 gives us an algorithm,
just not suitable for all rational numbers. The proof of Theorem 1.44 helps us
generalise it to any rational x.

1.10 Square roots in Qp

On Hensel’s lemma for the gradual approximation of polynomial solutions.
8In the usual sense! Not as an expansion.
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In R, the square root of r can be defined as the set of solutions of x2 − r in R.
When r is positive there are two solutions, when r is negative there is none.
The square root of N in Qp is the set of solutions of x2 − r in Qp.
In the following, p will be an odd prime: in the examples, p = 7. The the-
ory can be extended to P = 2, but in the next chapter we will only work on
odd primes. Consider for example r = 2. Instead of solving directly, let us
successively approximate it. This is equivalent to solving the set of congruences
modulo 7n

x2 ≡ 2 mod pn

(n = 1) Since 2 has Legendre symbol 1 it is a quadratic residual modulo 7, and
the equation has two solutions. Both x = 3 and x = 4 satisfy it.

(n = 2) We need to “lift” the solutions we found, meaning that they need to be
evaluated modulo 49 instead of modulo 7. From x ≡ 3 mod 7, we are
trying to set x = 3+ 7k and solve for k. Thus

x2 = (3+ 7k)2 = 9+ 42k + 49k2 ≡ 2 mod 49

and it is easy to see that it only has solution x ≡ 10 mod 49 for k = 1.
Similarly, from x ≡ 4 mod 7 we solve for k and get x ≡ −10 ≡ 39 mod 49.

(n = 3) Lifting again we get respectively 108 and 235 modulo 343.

This can be generalised. We are building two p-coherent sequences of inte-
gers of solutions (αn) and (βn) that still satisfy the congruence while going
forward: αn+1 ≡ αn mod pn. To turn a p-coherent sequence into the expansion
of a p-adic integer, just expand in base p.

α1 = 3
α2 = 10 = 3+ 1p

α3 = 108 = 3+ 1p + 2p2

α4 = 2166 = 3+ 1p + 2p2 + 6p3

β1 = 4
β2 = 39 = 4+ 5p

β3 = 235 = 4+ 5p + 4p2

β4 = 235 = 4+ 5p + 4p2 + 0p3

Since the square root of two is well-known to be irrational, we also know that
this expansion cannot be eventually periodic due to Theorem 1.44. In Gouvea
[13], p-coherent sequences are visually represented by the following diagram.

4

3

10

39

108

235
235

2166
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Notice the choice of words: “iteratively solve”. This kind of procedure is close
to Newton’s method. In R, the roots of f (x) = x2 − r can be approximated
fixing an initial x0 and iteratively computing

xn+1 = xn −
f (xn)
f ′(xn)

until a satisfying value is reached. Convergence is quadratic under certain
conditions. Here f ′(x) represents the usual derivative from analysis.
For example, with f (x) = x2 − 2 and x0 = 5,

step n xn error
n = 0 x0 = 5.00 -
n = 1 x1 = 2.70 2.30
n = 2 x2 = 1.72 0.98
n = 3 x3 = 1.44 0.28

This heavily depends on floating point precision9. One must be careful, as
f (x) = x2 + 1 is always positive and the method does not converge. In Qp this
is more delicate.

Definition 1.45 Consider f (x) = a0 + a1x + a2x2 + a3x3 + a4x4 + . . . polynomial
in R[x] for a generic ring R. Then its formal derivative is the polynomial

f ′(x) = a1 + 2a2x + 3a3x2 + . . .

Theorem 1.46 (Hensel’s Lemma) Consider f (x) = a0 + a1x + a2x2 + a3x3 + . . .
polynomial in Zp[x], suppose there exists a p-adic integer α1 such that

(i) f (α1) ≡ 0 mod pZp

(ii) f ′(α1) /≡ 0 mod pZp

There exists an unique p-adic integer α that is root of f and α ≡ α1 mod pZp.

Proof. We will provide a p-coherent sequence of integers (αn) and prove that
α can be defined as its limit. Remark that in Zp we have the chain of ideals

Zp = (1) ⊃ (p) ⊃ (p2) ⊃ (p3) ⊃ (p4) ⊃ ⋅ ⋅ ⋅ ⊃ (pk) ⊃ . . .

Given α1, consider α2 of form α2 = α1 + k1 p for some p-adic integer k1. This is
what we did before, and we will again substitute in f to obtain an expression
of α2. Keep in mind that this does not depend on the index of α2.

f (α2) = f (α1 + k1 p) = a0 + a1 (α1 + k1 p)+ a2 (α1 + k1 p)2 + a3 (α1 + k1 p)3

= a0 + a1 (α1 + k1 p)+ a2 (α2
1 + 2α1k1 p + k2

1 p2)+ a3 (α3
1 + 3α2

1k1 p +O(p2))+ . . .

= f (α1)+ a1 (k1 p)+ a2 (2α1k1 p + k2
1 p2)+ a3 (3α2

1k1 p +O(p2))+ . . .

= f (α1)+ f ′(α1)k1 p + a2 (k2
1 p2)+ a3 (O(p2))

3
+ . . .

≡ f (α1)+ f ′(α1)k1 p mod p2

9Interestingly enough, p-adic numbers can sometimes be exploited to obtain error-free and
precise arithmetic. See Abrahamis introduction [1].
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If we manage to find k1 such that the right hand side is zero, we also found
α2. From (i) we have that f (α1) ≡ 0 mod p, so f (α1) ≡ bp for some b. Then

pb + f ′(α1)k1 p ≡ 0 mod p2

b + f ′(α1)k1 ≡ 0 mod p

k1 ≡ −b ( f ′(α1))
−1

mod p

where f ′(α1) is not divisible by p, hence is invertible in Zp having unitary
norm. Set α2 = α1 + k1 p, we can repeat the procedure because it also satisfies
(i) and (ii). The sequence we get is Cauchy by Lemma 1.25 and its limit α
lies in Zp, the completion of Z under ∣ ⋅ ∣p. The limit will also satisfy (i) by
continuity and (ii) by construction.

This is analogous to Newton’s method. In fact, we could state it as

Corollary 1.47 Consider f (x) = a0+ a1x+ a2x2+ a3x3+ . . . polynomial in Zp[x],
suppose there exists a p-adic integer α1 such that

(i) ∣ f (α1)∣p < 1

(ii) ∣ f ′(α1)∣p = 1

then we can define a convergent sequence (αn) by setting

αn+1 = αn −
f (αn)
f ′(αn)

whose limit x is the unique p-adic integer such that ∣x − α1∣ < 1 and f (α) = 1.

Proof. Substituting in the equation

αn+1 = αn − x f (αn) ( f ′(α1))
−1

p = αn −
f (αn)p

p
( f ′(α1))

−1 = αn −
f (αn)
f ′(αn)

and the rest is just rewriting the properties exploiting ∣ ⋅ ∣p.

There are some differences. For example, the procedure never leaves Zp and
always works. We also get much more information on α. Consider again
f (x) = x2 − 2 in Q7 with f ′(x) = 2x. Focus on the first branch of solutions
(those with α1 = 3).

α2 = 3− 7
6
= 11

6
≡ (11× 41) ≡ 10 mod 72

α3 = 10− 98
20
= 51

10
≡ (51× 103) ≡ 108 mod 73

and so on. We can formalise something we used to prove Proposition 1.41.

Corollary 1.48 The polynomial f (x) = x2 − (1− p) has solutions in Qp.

Proof. By definition,
√

1− p lies in Zp if and only if f (x) = x2 − r has solutions
modulo p, i.e. 1 − p must be a quadratic residue modulo p. But 1 − p ≡ 1
mod p, so 1− p has Legendre symbol +1.
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In R, having f (x) = x2 − r for a negative r immediately told us there were
no real solutions. The equivalent remark in Zp is that if r is not a quadratic
residual there is no solution modulo p.

Lemma 1.49 Assume p ≠ 2. If α2
1 ≡ u mod pZp for some p-adic integer α1

and p-adic integral unit u ∈Z×p , then u is the square of an unit v ∈Z×p .

Proof. Consider f (x) = x2 − u. Then f (α1) ≡ 0 and f ′(α1) = 2α1 /≡ 0 modulo
pZp since p ≠ 2. The solution is an unit, v2 = u implies ∣v∣2p = ∣u∣.

Lemma 1.50 Assume p ≠ 2.

(i) An α ∈ Qp is a square if and only if α = p2nu2 for n ∈Z, u ∈Z×p .

(ii) The quotient group Q×p/(Q×p)2 has order four. If γ ∈ Z×p is any unit whose
reduction modulo p is not a quadratic residue, then the set {1, p, γ, γp} is
a complete set of representatives.

Proof. If α = p2nu2 for u ∈ Z×p then it is a square. Assume α is a square, hence
α = (γ)2 for some γ. Remark that any γ ∈ Qp can be written as

γ = pνp(γ)vα for vα invertible in Zp

therefore

α = (γ)2 = (pνp(γ)vγ)
2
= p2νp(γ)v2

γ

For (ii), consider the cosets of (Q×p)2 in Q×p induced by γ non-square unit.

1 ⋅ (Q×p) = {α ∈ Q×p ∶ α = 1 ⋅ β2 = p2νp(β)v2
β for some β ∈ Q×p}

1p ⋅ (Q×p) = {α ∈ Q×p ∶ α = 1p ⋅ β2 = p2νp(β)+1v2
β for some β ∈ Q×p}

γ ⋅ (Q×p) = {α ∈ Q×p ∶ α = γ ⋅ β2 = p2νp(β)γv2
β for some β ∈ Q×p}

γp ⋅ (Q×p) = {α ∈ Q×p ∶ α = γp ⋅ β2 = p2νp(β)+1γv2
β for some β ∈ Q×p}

Any α is not a square if it has odd valuation (due to the first point), non-square
unitary part (Lemma 1.49) or both. These sets form a partition (Q×p)2.

1.11 Representation of elements of Qp

On the form of p-adic integers under a different set of representatives.

We will conclude with the generalisation of Problem 1 and Problem 2 from
A = {0, . . . , p − 1} to any other set of representatives. We can operate exactly
like in modular arithmetic, and this is induced by the structure of Zp.

Lemma 1.51 Z/pkZ ≃ Zp/pkZp
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Proof. Consider the map

f ∶Zp Ð→Zp

α z→ αpk

ker( f ) = {a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ ∈Zp ∶ 0 = a0 pk + a1 pk+1 + a2 pk+2 + . . .}

= {0+ 0p + 0p2 + ⋅ ⋅ ⋅ ∈Zp} = {0}

im( f ) = {α ∈Zp ∶ α = f (β) for some β in Zp} = pkZp

A sequence of ring morphisms D
f
Ð→ E

g
Ð→ F is exact if im( f ) = ker(g). Starting

from f , we seek for a map g and ring F such that ker(g) = pkZp and im(g) ⊆ F.

g =∶Zp Ð→ Z/pk
Z

α =
+∞
∑
i=0

ai p
i z→

k−1
∑
i=0

ai p
i

ker(g) = {α =
+∞
∑
i=0

ai p
i ∈Zp ∶ 0 = a0 + a1 p1 + a2 p2 + ⋅ ⋅ ⋅ + ak−1 pk−1}

= {0+ 0p + ⋅ ⋅ ⋅ + 0pk−1 + ak pk + ⋅ ⋅ ⋅ ∈Zp} = pkZp

im(g) = {m ∈ Z/pk
Z ∶ m = g(β) for some β in Zp} = Z/pk

Z

With this choice, the sequence is exact. Now construct

0
iÐÐ→Zp

f
ÐÐ→Zp

g
ÐÐ→ Z/pk

Z
p
ÐÐ→ 0

where i is inclusion and p is projection to zero. This sequence is short (mean-
ing it has five components) and exact in each step. Applying the isomorphism
theorem of rings on g, since im(g) = ker(p) and ker(g) = im( f ),

Zp/ker(g) ≃ im(g)
Zp/pk

Zp ≃ Z/pk
Z

Theorem 1.52 (Invariance under representatives) Consider a set of represen-
tatives A ⊂Zp of Z/pZ. Any α ∈ Qp can be uniquely written as

α =
+∞
∑

i=−k
ai p

i

where each coefficient ai is an element of A and −k = νp(α).

Proof. Assume α ∈Zp.
Find the unique representative a0 in A such that α − a0 ∈ Z/pZ. Remark that
Z/pZ ≃ Zp/pZp, so α − a0 = pβ1 for some β ∈Zp.
Find the unique representative a1 in A such that β1 − a1 ∈ Z/pZ, so β1 − a1 = pβ2
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for some β ∈ Zp. Proceed iteratively. If we stop at step n we find sequences
a0, a1, . . . , an and α, β1, . . . , βn−1 such that

α = a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ + pn−1βn−1

νp [α − (a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ + pn−1βn−1)] ≥ n − 1

∣α − (a0 + a1 p + a2 p2 + ⋅ ⋅ ⋅ + pn−1βn−1)∣ ≤ p−(n−1)

so the series converges in Zp by Lemma 1.33, and indeed converges to α.
If α ∉ Zp it suffices to multiply by pνp(α), expand as before, and then divide
by pνp(α) to get the same result.

We will usually switch between the two following complete sets of represen-
tatives of Z/pZ,

A = {0, . . . , p − 1} B = {−
(p − 1)

2
, . . . ,+

(p − 1)
2
}

Consider α ∈ Qp. First remark that A ∩B is non-empty so not all representa-
tives need to be discarded. Start from the first non-zero coefficient, the one
with index i = νp(α). If ai ∉ B then ai ≥ p − 1/2. But if we substitute ai with

ai = −(p − ai)+ p

the value of α does not change. Denoting this as ai = a′i + p, the old (i + 1)-th
coefficient is increased by 1 and the new i-th coefficient a′i = −(p − ai) satisfies

p − 1
2

< ai ≤ p − 1

−1− p
2

< −(p − ai) ≤ −1

−
(p − 1)

2
≤ −(p − ai) ≤ −1

Consider for example α = 2 + 2p + 2p2 in Q3. The first non-zero entry of α is
indexed by νp(α) = 0 and is a0 = 2. It does not lie in A∩B = {0, 1}, so we set it
to a′0 = −1 and increase a1.

α = 2+ 2p + 2p2 = (−(p − 2)+ p)+ 2p + 2p2

= −1+ 3p + 2p2 = −1+ 3p2 = −1+ 1p3

The steps can be visualised as follows.

a0 a1 a2 a3
2 2 2 0
−1 0 0 1
-1 0 0 1
-1 0 0 1
-1 0 0 1
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Consider α = 0 + 1p + 2p2 + 1p3. The first non-zero entry has index νp(β) = 1
but lies in B, so we step over to a2 ∉ B and iteratively proceed as before.

a0 a1 a2 a3 a4
0 1 2 1 0
0 1 2 1 0
0 1 2 1 0
0 1 −1 2 0
0 1 −1 2 0
0 1 −1 −1 1
0 1 −1 −1 1

It is easy to see that the value of α is unchanged. Also notice how we might
need an additional element to accommodate an eventual carry-over.
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Mathematics shows up in the most unexpected places. In 1202, Italian mathe-
matician Leonardo Fibonacci proposed a problem in his Liber Abaci (“Book of
Calculation”, [12]), that can be summarised as:

“A man placed a pair of rabbits in some place completely surrounded by a wall, find
out how many pairs of rabbits would descended from them in one year.”

He famously provided a solution, the (perhaps already known) Fibonacci
Sequence Fn ∶ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . where the first three terms are
boundary conditions. The ratio Fn+1/Fn tends to φ, the golden ratio. A surpris-
ing amount of mathematics sprouts from this sequence and φ = 1.61803 . . . .
We truncate it since φ is irrational, but there is a compact representation also
providing excellent approximations and reflecting some of its properties.

A continued fraction is the representation of a number x as a (potentially)
infinite series of fractions, meaning that for some ai, bi in C we wish to have

x = a0 +
b1

a1 +
b2

a2 +
b2

a3 + . . .

= [a0
a1
b1

a2
b2

a3
b3

. . . ]

This is also represented as [a0, a1 ∶ b1, a2 ∶ b2, . . . ]. If all the bi are required to be
1, the continued fraction is in canonical form and is conveniently simplified
to x = [a0, a1, a2, . . . ]. The integers ai are called partial quotients. Interestingly,
φ has a periodic expansion. We will prove this and see that it relies some
information on φ, and on all real numbers. It is only natural to wish for a
generalisation: we will focus on attempts at the definition of p-adic continued
fractions, and understand why we called them “attempts”.

This chapter is mostly based on personal remarks and rearrangements on the
first chapters by Olds [27] and Ikenga [16]. Other contributions will be cited
as needed.
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2.1 Rational numbers as continued fractions
On the Euclidean algorithm for the expansion of rational numbers.

Definition 2.1 (Canonical continued fraction) Consider (ai)I with I index set.
A canonical continued fraction is a chain of consecutive divisions:

x = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

where each ai is an integer. If I is finite, the chain terminates and the fraction
is said finite. If I =N instead, the fraction is said infinite.

Different notations exist for generalised continued fractions. For example,
Italian mathematician Pietro Cataldi wrote

x = a0 ⋅&
b1

a1 ⋅
&

b2

a2 ⋅
& . . .

where (ai)I and (bi)I are integers, while German mathematician Carl F. Gauss
used the Kettenbruch (“continued fraction”) operator K

x = a0 +
+∞
K
i=0

bi

ai

which is mostly used by complex analysts, who put fn ∶= Kn
i=0

bi/ai for (ai)I
and (bi)I complex rational functions. For canonical continued fractions we
use the modern notation [a0, a1, a2, . . . ] of uncertain attribution.

Fibonacci’s φ = 1.618033988749 . . . will prove to be a great staging ground
for our results. The minimal polynomial of Fn is f (x) = x2 − x − 1 with roots

φ = 1+
√

5
2

, ψ = 1−
√

5
2

The first is conventionally called golden ratio and the second is its conjugate.
It is not hard to derive Binet’s formula for Fn:

Fn =
φn +ψn

φ +ψ
=

φn +ψn
√

5

This proves that the quotient of successive terms of Fn tends to φ, just remark
that ∣ψ∣ < 1. More importantly, φ is a root of x2 − x − 1, so φ2 = φ + 1 and

φ = 1+ 1
φ
= 1+

1

1+
1
φ

= ⋅ ⋅ ⋅ = [1, 1, 1, 1, . . . ]

Can this procedure be generalised? And to which sets of numbers?
Let us start from a rational, for example α = 71/17. We can split the numerator

α = 71
17
= 17× 4+ 3

17
= 4+ 3

17
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and even further

α = 4+ 3
17
= 4+

1
17
3

= 4+
1

5× 3+ 2
3

= 4+
1

5+
2
3

= 4+
1

5+
1

1+
1
2

= [4, 5, 1, 2]

For all rationals, this returns a finite continued fraction in canonical form.
Notice how the procedure mimics what is done in the Euclidean algorithm.

Lemma 2.2 (Euclidean division) Consider two positive integers a and b ≠ 0.
There exist two unique positive integers q and r (0 ≤ r < b) such that a = bq + r.

Proof. Fix b and proceed by induction on a. The base case is a = 0, where we
can choose b = r = 0. Suppose we have a pair (q, r) for a generic a > 1, then

a + 1 = qb + r + 1

and we need to find an appropriate pair (q′, r′) for a′ = a + q. Since r < b, we
have r + 1 ≤ b. If r + 1 = b we choose (q+ 1, 0), and (q, r + 1) if r + 1 < b. Suppose
a = qb + r = q′b + r′ for distinct q ≠ q′ and r ≠ r′, then b(q − q′) = r′ − r where
the right side is not divisible by b but the left side is, so they are both equal to
zero and q = q′, r = r′.

Euclidean division can be turned into an algorithm for the greatest common
divisor of a and b. This might seem unrelated to our reasoning at first, but we
will see its ties.
Consider a = 71 and b = 17, we apply “one step” of Euclidean division

71 = 4× 17+ 3 q = 4, r = 3

and we could go on, albeit with a change of parameters. Let us define as ak,
bk, qk, rk the values at step i. At each step, set ak+1 = bk and bk+1 = rk.

17 = 5× 3+ 2 q2 = 5, r2 = 2
3 = 1× 2+ 1 q3 = 1, r3 = 1
2 = 2× 1+ 0 q4 = 2, r4 = 0

We stop at the last positive remainder r, which is exactly the GCD of a and b.
This procedure is called (integral) Euclidean Algorithm.

Algorithm 2.3 (Integral Euclidean algorithm)

in: positive integers a, b

1. set ak ← a, bk ← b

2. set bk, rk ← euclidean_division(ak,bk)

3. if rk = 0 return rk−1, else set ak+1 ← bk, bk+1 ← rk
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Theorem 2.4 The Euclidean Algorithm returns d = gcd(a, b).

Proof. Consider a single step of Euclidean division on a and b, returning the
pair (r, q). Any n dividing both a and b divides r = a− bq. For the same reason,
any n dividing b and r also divides a.

{divisors of a and b} = {divisors of b and r}

Therefore, d = gcd(a, b) = gcd(b, r). Consider now k steps of Euclidean divi-
sion, where a1 = a and b1 = b. Assume rk ≠ 0. The same argument proves

{divisors of a1 and b1} = {divisors of ak and bk}

hence d is also the GCD of ak and bk. Suppose we reach rk+1 = 0, then d is a
divisor of rk ≠ 0 and d ≤ rk. Moreover rk divides bk and ak, since (respectively)
0 = rk+1 = ak+1 − bk+1qk+1 = bk − rkqk+1 and ak = bkqk + rk. But d is the greatest of
all common divisors, so d ≥ rk and d = rk.

Given a positive rational α = a/b, we are now able to write its continued fraction
expansion: apply the Euclidean algorithm on a and b until rk+1 = 0, then
α = [q0, q1, q2, . . . , qk]. We cannot include step k+ 1 since rk+1 = 0 would require
dividing by 0. Some remarks before proceeding:

(i) The algorithm must terminate since the ri are a decreasing sequence of
non-negative integers.

(ii) The sequence (qk)k is uniquely determined by a and b, so the expansion
is unique if we build it this way.

(iii) If both a and b are negative, the algorithm does not change. If only one is
negative, some refer to −α as −[r0, r1, r2, . . . , rk]. Others exploit Euclidean
division with a negative q and then proceed. If a = 0, then α = 0 and the
expansion is α = [0]. If b = 0, α is undefined.

(iv) Due to (iii), all partial quotients ai are positive integers except for a0
which can be positive, negative or zero.

Algorithm 2.5 (Rational Continued Fraction expansion)

in: a rational α = a/b
1. apply the integral Euclidean algorithm on a, b till completion (i.e.

rk+1 = 0), saving the next quotient in (qi)I at each step.

2. α = [q0, q1, q2, . . . , qk]

Continued fractions are unexpectedly well-equipped to provide information
on the real number they represent.

Theorem 2.6 Finite canonical continued fractions are exactly the expansions
of rational numbers α = a/b.

Proof. Assume without loss of generality a and b to be positive. Of course
a finite canonical continued fraction represents a rational number, just pro-
ceed backwards. Consider on the other side a rational α = a/b. Applying the
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Euclidean algorithm on a = a0 and b = b0 returns a couple (q0, r0) such that
a = bq0 + r0, which can be rearranged as

a
b
= q0 +

r0

b

If r0 ≠ 0 we proceed with a1 = b0 = b and b1 = r0. This can be done since all the
numbers we are dealing with are positive. Again,

a
b
= q0 +

r0

b
=

a
b
= q0 +

1
b
r0

=
a
b
= q0 +

1

q2 +
r1

r0

The process of successive division ends whenever rk+1 = 0, and this must
happen since r0 > r1 > r2 > . . . is a decreasing sequence of integers.

Corollary 2.7 The representation from Algorithm 2.5 is not unique.

Proof. First, the last term can be modified to obtain an even or odd number of
terms in the expansion. If the last ak = 1,

1
ak
=

1

(ak + 1)+
1
1

and [a0, . . . , ak] = [a0, . . . , ak − 1, 1]. If ak ≠ 1, we can do the exact opposite
and write [a0, . . . , ak] = [a0, . . . , ak−1 + 1]. Second, with the same idea, any
expansion can be “cut short”: [a0, . . . , ak−1, ak] = [a0, . . . , ak−1 + 1/ak].

Uniqueness is not an intrinsic property of the expansion, but of the algorithm
generating it. We implicitly require the last term of a finite expansion to be
different from 1 to have uniqueness. However, at times we will make use of
non-unicity to get two different expansions of the same number. Remark that
this is only meaningful for rationals, as expansions of irrationals are infinite.

Back to our example, [1, 1, 1, 1, 1, . . . ] is periodic, hence the number it rep-
resents (φ) is irrational by Theorem 2.6. Remark that we calculated it via the
minimal polynomial of φ over Q. Can we find an algorithm for any other
irrational?

2.2 Irrational numbers as continued fractions
On the generalisation of the Euclidean algorithm via the floor function.

The previous approach only works for rational numbers. Now, φ is not ra-
tional. If it was we would also have 2φ − 1 =

√
5 in Q, which is absurd: by

standard arguments, a/b =
√

5 for a reduced quotient a/b in Q implies a2 = 5b2 so
a is either 5 or 1. This is true for all square roots of non-squares. Furthermore,
φ is an algebraic irrational.
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Definition 2.8 The set of irrational numbers is R ∖Q, represented as P

due to the alphabetic succession P, Q, R. They are classified as either

(i) algebraic irrationals, roots of a non-zero polynomial in Z[x]
(ii) transcendental irrationals, all the others.

Since Q is countable and R is not, there are uncountably many elements in P.
It is very difficult to prove that a real α is transcendental irrational.

Corollary 2.9 A real number has an infinite continued fraction expansion if
and only if it is an irrational.

Proof. Trivial from Theorem 2.6.

For α = a
b ∈ Q, Euclidean division iteratively returned the integer closest to α

(from below). We can do something similar for irrationals using the floor of α.

Algorithm 2.10 (Real Euclidean algorithm)

in: real number α

1. calculate ai = ⌊xi⌋ and the error ei = xi − ai

2. if ei ≠ 0 define xi+1 = 1/ei and go on, else if ei = 0 stop

Lemma 2.11 This is a generalisation of the Euclidean Algorithm to R.

Proof. For a rational α = a/b one step of this is equivalent to one step of the
Euclidean Algorithm. With the notation of this theorem,

rational Euclidean Algorithm real Euclidean Algorithm
x0 = α = a

b x0 = α = a/b
a0 = q from a = qb + r a0 = ⌊α⌋ = q from a = qb + r
e0 = x0 − a0 =

a−qb
b = r

b e0 = x0 − a0 =
a−qb

b = r
b

x1 = b
r x1 = 1

e0
= b

r

For rationals nothing changes: properties like Theorem 2.6 and Corollary 2.9
still hold. But the algorithm cannot be adapted to output a gcd (of which
numbers?). Remark that irrationals also introduce all kind of errors. Consider
π = 3.14159265 . . . and try applying the algorithm,

i xi ai true ai ei
0 3.141592653589793. . . 3 3 0.141592653589793 . . .
1 7.062513305931052. . . 7 7 0.062513305931052
2 15.996594406684103. . . 15 15 0.996594406684103 . . .
⋮

12 14.300419599222613. . . 14 14 0.300419599222613 . . .
13 3.328677631511632. . . 3 2 0.328677631511632 . . .

and for i = 13 our algorithm starts misbehaving1. This is due to the floating
point errors adding up and slowly poisoning our calculations.

1We tested the above algorithm on a two-core 11th Gen Intel(R) Core(TM) i7-11370H 3.30GHz
and 3.30 GHz, Python 3.9 for Windows 11.
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Algorithm 2.12 (Real Continued Fraction expansion)

in: real number α

1. apply the real Euclidean algorithm on α till completion (i.e. ei = 0),
saving the next ai in (ai)I at each step.

2. α = [a0, a1, a2, a3, . . . ]

Theorem 2.13 The algorithm returns the continued fraction expansion of α.

α = [a0, a1, a2, . . . ]

This also works for rationals and provides a generalised algorithm for all real
numbers. In the next Section we will develop the tools to prove Theorem 2.13.

2.3 The convergents
On the properties of convergents. Diophantine approximation of real numbers.

Consider the continued fraction expansions of π and φ. It is a fair question to
consider what happens when we study the initial segments of [a0, a1, a2 . . . ],
i.e. the Ci = [a0, . . . , ai]. We already know they are rational numbers since they
have a finite expansion.

π φ
[3] C0 = 3/1 = 3 [1] C0 = 1/1 = 1
[3, 7] C1 = 22/7 = 3.1428 . . . [1, 1] C1 = 2/1 = 2.0000
[3, 7, 15] C2 = 333/106 = 2.8584 . . . [1, 1, 1] C2 = 3/2 = 1.5000
[3, 7, 15, 1] C3 = 355/113 = 3.1415 . . . [1, 1, 1, 1] C3 = 5/3 = 1.6666 . . .

For irrational numbers, the Ci act as a gradual approximation. Observe how
fast the segments converge to the value of α in the two cases α = π and α = φ.
They both converge, but the approximation of π at a faster pace.

(a) approximation of π (b) approximation of φ

Figure 2.1: Convergence of the Ci for irrational numbers.

This is somewhat trivial for rationals, as the algorithm terminates with a ra-
tional input. They actually provide the best approximation for any irrational.
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Definition 2.14 (Convergents) Consider a real number α with continued
fraction expansion [a0, a1, a2, a3, . . . ], not necessarily finite. We define Ci =
[a0, a1, . . . , ai] as the i-th convergent of α. If I = [0, 1, . . . , k], then Ck+1 is
undefined and the sequence (Ci)I is finite.

Convergents are a powerful tool that allow to prove a variety of results. For
example, they construct a sequence of approximations.

Problem 3 (Diophantine approximation) Given a real (irrational) α,
provide a “good” approximation via rationals.

This problem is not very relevant for our scenario, however while studying it
we will develop the tools to study others of our interest.

Lemma 2.15 Consider an infinite continued fraction. Recursively define two
sequences (pi)I and (qi)I such that

⎧⎪⎪⎨⎪⎪⎩

p−2 = 0, p−1 = 1
pk = ak pk−1 + pk−2 for k ≥ 0

⎧⎪⎪⎨⎪⎪⎩

q−2 = 1, q−1 = 0
qk = akqk−1 + qk−2 for k ≥ 0

then Ck = [a0, a1, a2, . . . , ak] =
pk
qk

for k ≥ 0. This justifies defining them as (re-
spectively) partial numerators and partial denominators.

Proof. This holds for C0 since p0 = a0 and q0 = 1. Consider a generic k > 0, we
know that the continued fraction representation of Ck+1 is not unique and

Ck+1 = [a0, a1, a2, a3, . . . , ak, ak+1] = [a0, a1, a2, a3, a4, . . . , ak +
1

ak+1
]

=
(ak + 1

ak+1
) pk−1 + pk−2

(ak + 1
ak+1
) qk−1 + qk−2

=
ak+1(ak pk−1 + pk−2)+ pk−1

ak+1(akqk−1 + qk−2)+ qk−1

=
ak+1 pk + pk−1

ak+1qk + qk−1
=

pk+1

qk+1

Consider α = [a0, a1, a2, . . . ]. We wish to study the properties of the sequence
(Ci)I in (R, ∣ ∣∞). This requires some short lemmas on the properties of these
newly defined sequences.

Lemma 2.16 For k ≥ 0,

(pk pk−1
qk qk−1

) = (a0 1
1 0)(

a1 1
1 0)⋯(

ak 1
1 0)

Proof. Easy to prove by induction. The base case k = 0 is trivial, and

(pk pk−1
qk qk−1

) = (a0 1
1 0)(

a1 1
1 0)⋯(

ak 1
1 0)

= (pk−1 pk−2
qk−1 qk−2

) ⋅ (ak 1
1 0) = (

ak pk−1 + pk−2 pk−2
akqk−1 + qk−2 qk−2

)

which is the recursive relation.
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Corollary 2.17 For k ≥ 0,

pkqk−1 − qk pk−1 = (−1)k+1

Proof. The matrices defined by the aj in the previous lemma have all determi-
nant −1 and there are k + 1.

Corollary 2.18 For k ≥ 0,

Ck −Ck−1 =
(−1)k+1

qkqk−1

It also follows that ∣Ck −Ck−1∣ = 1/qkqk−1.

Proof. Consider the previous corollary and divide by qkqk−1.

Theorem 2.19 (Ck) is a Cauchy sequence converging to α, meaning that

α = lim
k→∞

Ck

Proof. Given an ε > 0, by Corollary 2.18 we can always find an N such that for
n, m ≥ N and n < m the following is upper-bounded by ε:

∣Cm −Cn∣ ≤ ∣Cm −Cm−1∣+ ⋅ ⋅ ⋅ + ∣Cn+1 −Cn∣ =
m
∑
k=n
∣Ck −Ck−1∣ =

m
∑
k=n

1
qkqk−1

so the sequence is Cauchy. Since R is a complete space (Ck) converges to a
limit, it remains to show it is α. By definition α = [a0, a1, . . . , ak, xk+1], where
xk+1 = [ak+1, ak+2, ak+3, . . . ]. Hence for k ≥ 1

α =
xk+1 pk + pk−1

xk+1qk + qk−1

α(xk+1qk + qk−1) = xk+1 pk + pk−1

xk+1(xqk − pk) = −(xqk−1 − pk−1)

xk+1qk (α −
pk

qk
) = −qk−1 (α −

pk−1

qk−1
)

α −
pk

qk
= (−

qk−1

xk+1qk
) (α −

pk−1

qk−1
)

α −
pk

qk
= (−

qk−1

xk+1qk
) (α −

pk−1

qk−1
)

All terms defining qk are positive, so qk > qk−1 > 0. Moreover xk+1 ≥ 1, other-
wise the continued fraction would not be infinite. Therefore

∣α −Ck∣ = ∣−
qk−1

xk+1qk
∣ ∣α −Ck−1∣ < ∣α −Ck−1∣
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This proves proves Theorem 2.13. Corollary 2.18 states that the approximation
error is 1/qkqk−1 and since the qk are increasing

∣α −Ck∣ < 1/q2
k

The convergents of a continued fraction seem to solve Problem 3, but are they
a good approximation? Can we find one better?

We can provide some results on the approximation quality.

Theorem 2.20 Every odd C2m+1 is an upper bound for every even C2n.

Proof. We can prove that odd convergents strictly increase and even conver-
gents strictly decrease:

Ck −Ck−2 = Ck −Ck−1 +Ck−1 −Ck−2 =
(−1)k+1

qkqk−1
− (−1)k

qk−1qk−2

=
(−1)k (qk − qk−2)

qkqk−1qk−2
=
(−1)kakqk−2

qkqk−1qk−2
= (−1)kak

qkqk−1

where all are positive integers except eventually (−1)k. Thus

C0 < C2 < C4 < C6 < C8 < . . .
C1 > C3 > C5 > C7 > C9 > . . .

We already know that the sign of Ck −Ck−1 is dictated by (−1)k+1. Pairing the
two results, we get that for any m

(i) C2m+1 > C2m

(ii) C2m+1 > C2m+2

or in other words that any odd convergent is greater than both its predecessor
and its successor. Finally, assume there is an even convergent C2n such that
C2m+1 ≤ C2n. If n < m then C2m+1 ≤ C2n < C2m, and if n > m then instead
C2n+1 < C2m+1 ≤ C2n. Both are absurd due to (i) and (ii).

Corollary 2.21 Ck is the best approximation of α with denominator at most qk.

Proof. Suppose p/q is the best rational approximation of α with denominator at
most qk, this property is evaluated with its distance from α.
We know that qk > qk−1, so pk/qk and pk−1/qk−1 are rationals of denominator at
most qk. Moreover odd convergents are increasing, even convergents are de-
creasing, and α lies between them due to Corollary 2.18. Then also p/q lies
between them. We can prove that

(i) ∣ pq −
pk−1
qk−1
∣ = ∣ pqk−1−pk−1q

qk−1q ∣ ≥ 1
qk−1q

(ii) ∣ pq −
pk−1
qk−1
∣ ≤ ∣ pk

qk
− pk−1

qk−1
∣ = 1

qk−1qk

(iii) 1
qk−1q ≤ ∣

p
q −

pk−1
qk−1
∣ ≤ 1

qk−1qk

where (iii) comes from (i) and (ii). Finally, since q < qk by hypothesis, we get
that the inequalities in (iii) are actually equalities. This implies q = qk, and
from (iii) p = pk.
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Theorem 2.22 If a/b satisfies

∣α − a
b
∣ < 1

2b2

then it is among the convergents of α.

Proof. Assume it is not a convergent. By the properties of (qi)I we can pick an
index k such that qk < b < qk+1 and

∣αqk − pk∣ ≤ ∣αb − a∣ = ∣b∣ ∣α − a
b
∣ < 1

2b

∣ a
b
−

pk

qk
∣ ≤ ∣ a

b
− α∣+ ∣α −

pk

bk
∣ < 1

2b2 +
1

2qkb

The leftmost numerator, aqk − pkb, is a nonzero integer since a/b ≠ pk/qk. Then

∣ a
b
−

pk

qk
∣ ≥ 1

qkb

which returns qk > b. But this contradicts our choice of k.

Theorem 2.23 (Hurwitz) Any irrational number α has an infinity of rational
approximations p/q with q ≥ 1 which satisfy the inequality

∣α −
p
q
∣ < 1√

5q2

Proof. See Olds [27] or LeVeque [19].

A crucial step in the proof, which we will not get into, is that if the ai get
very large very fast we get good approximations of α. Back to our example,
φ is often called the “simplest form” for an irrational: remark that a1, a2, . . .
must be positive (not a0) in an irrational continued fraction. However, this
heuristically implies that φ is one of the hardest irrationals to approximate:
its convergents keep a distance from φ close to the boundary by Hurwitz.

2.4 Linear fractional transformations
On a convenient functional representation of the chain division operation.

We saw that the continued fraction α = [a0, a1, a2, . . . ] is the result of a chain
of consecutive divisions. This usual representation via square or triangular
brackets conveniently hides the repeated operation, which has form

aj ↦ αj−1 +
1
aj
=

αj−1aj + 1

aj
=∶ αj

for αj−1 = [a0, . . . , aj−1]. We can introduce a class of functions representing it.
This general overview comes from personal remarks on Pollack’s introduction
[30].
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Definition 2.24 Consider a, b, c, d complex numbers. A linear fractional
(complex) transformation is a C-to-C function

z z→ L(z) = az + b
cz + d

when defined.

This is often called Möbius Transform in complex analysis, with the implicit
requirement that L can be extended to a C∞-to-C∞ bijection on the Riemann
sphere. If c ≠ 0 this is done defining

L ∶ ∞z→ a/c
−d/c z→∞

while if c = 0

L ∶ ∞z→∞

which is a bijection if we require ad − bc ≠ 0. This will usually hold for us.
The function L is associated to a matrix m depending on its parameters

m = (a b
c d)

and we can remark it with the notation Lm. The condition ad− bc ≠ 0 becomes
det(m) ≠ 0. Consider for example the case a = b = c = 1, d = 0 and fix z0 = 1, the
concept of “chain of operations” resembles

z0 = 1
z1 = L(z0) = 2

z2 = L(z1) = L2(z0) = 1.5

z3 = L(z2) = L3(z0) = 1.6

What we are doing here is by all means

z1 =
1+ 1

1
= 1+ 1

1

z2 =
(1+ 1

1)+ 1

(1+ 1
1)

= 1+ 1
1+ 1

1

and so on, meaning that zk = Lk(1) is the k-th convergent of φ. This is due to
the choice of ( 1 1

1 0 ) as m, and can be formally proved.

Lemma 2.25 Consider Lm and Ln. Then the matrix associated to their com-
position Lm ○ Ln is mn, whenever all three are defined.

Proof. By definition,

(Lm ○ Ln)(z) = Lm (Ln(z))

= Ln(z)am + bm

Ln(z)cm + dm
=
( zan+bn

zcn+dn
) am + bm

( zan+bn
zcn+dn

) cm + dm

= (aman + bmcn)z + (ambn + bmdn)
(cman + bmcn)z + (cmbn + dmdn)

= Lmn(z)
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In our previous example, the k-th power of m is

(1 1
1 0)

k

= (pk pk−1
qk qk−1

)

where the (pi)I = (1, 2, 3, 4, 8, . . . ) and (qi)I = (1, 1, 2, 3, 5, . . . ) are partial nu-
merators and denominators of φ = [1, 1, 1, 1, . . . ], since we are exponentiating
matrices of the form ( ai 1

1 0 ) for ai = 1. Due to the previous Lemma,

Lk(x) = L( pk pk−1
qk qk−1

)(x) =
pkx + pk−1

qkx + qk−1

L1(1) =
p1 + p0

q1 + q10
= 2

L2(1) =
p2 + p1

q2 + q1
= 3

2

L3(1) =
p3 + p2

q3 + q2
= 1.6

For a less trivial example, pick α = [4, 5, 1, 2] = 71/17 instead. Define the matrices

Ak = (
ak 1
1 0)

We already know they can be used to iteratively construct the sequences (pi)I
and (qi)I from their initial values and the (ai)I . Here I = {0, 1, 2, 3}, and

A0 = (
4 1
1 0) A1 = (

5 1
1 0) A2 = (

1 1
1 0) A3 = (

2 1
1 0)

This becomes more interesting if we set Lk(ak) = LAk−1 (LAk−2
(. . . LA0(ak)))

for k ≥ 0, which is an immediate generalisation of the previous Lemma.

L1(a1) = LA0(a1) =
4a1 + 1

1a1
= 4+ 1

5
= C1

L2(a2) = LA0 A1 (a2) = L( 21 4
5 1 )
(a2) =

21a2 + 4
5a2 + 1

= C2

L3(a3) = LA0 A1 A2 (a3) = L( 25 21
6 5 )

(a3) =
25a3 + 21
6a3 + 5

= C3 = α

One could also reasonably set A−1 = (
p−1 p−2
q−1 q−2 ) = ( 1 0

0 1 ) to define L0(a0) as

L0(a0) =
a0

1
= 4 = C0

and none of the other Li are varied since A−1 is the identity matrix.

Lemma 2.26 Consider Fn = A0 ⋅ An−1 for n > 0. Then LFn(an) = Cn.

Proof. Remark that Fn = A0⋯An−1 = (
pn−1 pn−2
qn−1 qn−2 ), therefore

LFn(an) = L( pn−1 pn−2
qn−1 qn−2

)(an)

=
an pn−1 + pn−2

anqn−1 + qn−2
=

pn

qn
= Cn
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We can also justify the requirement that det(m) ≠ 0.

Lemma 2.27 For m = ( a b
c d ), if Lm is defined in x and y then

Lm(x)− Lm(y) =
det(m)(x − y)
(cx + d)(cy + d)

Proof. By direct computation,

Lm(x)− Lm(y) =
ax + b
cx + d

−
ay + b
cy + d

=
(ax + b)(cy + d)− (ay + b)(cy + d)

(cx + d)(cy + d)

=
ad(x − y)− bc(x − y)
(cx + d)(cy + d)

=
det(m)(x − y)
(cx + d)(cy + d)

Most of the properties we described can be rearranged with linear fractional
transformations in mind. Consider for example the following.

Proposition 2.28 Odd and even convergents tend to the same limit.

Proof. Consider ∣C2n −C2n+1∣ for n → +∞. Then

∣C2n −C2n+1∣ = ∣LF2n(a2n)− LF2n+1(a2n+1)∣
= ∣LF2n(a2n)− LF2n (LA2n(a2n+1))∣

= ∣LF2n(a2n)− LF2n (a2n +
1

a2n+1
)∣

=
RRRRRRRRRRRRRR

det(F2n)(−1/a2n+1)
(q2na2n + q2n−1) (q2n (a2n + 1

a2n+1
)+ q2n−1)

RRRRRRRRRRRRRR

≤ ∣det F2n∣
∣a2n+1∣ ∣q2nq2n−1∣

= 1
∣a2n+1∣ ∣q2

2n−1∣
≤ 1
∣q2nq2n−1∣

= 1
q2nq2n−1

since ∣det F2n∣ = 1 and the qi are positive.

This also provides an exact analogue for the approximation quality bound of
Corollary 2.18.

2.5 Quadratic irrationals and periodicity
On their representation and Lagrange’s algorithm for efficient computation.

Relation with periodic expansions.

A quadratic irrational is a real number that is both irrational and a root of a
degree-two polynomial in Z[x]. An example is φ, which we know is a root of
f (x) = x2 − x − 1 ∈Z[x].

Lemma 2.29 Any α is quadratic irrational if and only if it can be expressed as

α = P +
√

D
Q

satisfying the properties
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(i) P is an integer

(ii) D is a positive integer and not a perfect square

(iii) Q is a non-zero integer dividing P2 −D

This is unique if D is squarefree: in such case, an α is in canonical form.

Proof. Consider a quadratic irrational. The degree-two polynomial it is root of
has form ax2 + bx + c. Its determinant is non-zero, else its roots would not be
irrational. It cannot be negative either, else its root would be complex.

x1 =
−b +

√
b2 − 4ac

2a
x2 =

−b −
√

b2 − 4ac
2a

Q = 2a, P = −b, D = b2 − 4ac Q = −2a, P = b, D = b2 − 4ac

From the above D > 0 and D is not a square, otherwise α would be rational.
Assume instead to have an α satisfying (i), (ii) and (iii), then

α = P +
√

D
Q

αQ = P +
√

D

α2Q2 + P2 − 2αPQ = D

α2Q2 + α(−2PQ)+ (P2 −D) = 0

Then α is root of x2Q2 + x(−2PQ)+ (P2 −D), which is a polynomial of degree
two and coefficients in Z. Its roots are exactly the

2PQ ±
√

4P2Q2 − 4Q2(P2 −D)
2Q2 = P ±

√
D

Q

and its determinant is ∆ = 4D/Q2, therefore it cannot be zero due to (ii) and the
polynomial does not split.

For example, both roots of x2 − x − 1 we presented (φ and ψ) are already in
canonical form. An example of a rational not in canonical form is

2+
√

20
4

because while Q = 4 divides P2 −D = 4− 20 = −16, D = 20 is a square.
We have an efficient algorithm to compute the continued fraction expansions
of quadratic irrationals.

Lemma 2.30 If x is a quadratic irrational and the linear fractional transforma-
tion L is defined in x, then L(x) is also a quadratic irrational.

Proof. Assume x is in canonical form, then it is a matter of calculations to
show that L(x) is also a quadratic irrational in

√
D.
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Theorem 2.31 (Lagrange’s algorithm) If α is a quadratic irrational in canonical
form, we can define three infinite sequences of integers (Pk), (Qk), (ak) and
an infinite sequence of irrationals (xk) as

⎧⎪⎪⎨⎪⎪⎩

P0 = P
Pk+1 = akQk − Pk for k ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q0 = Q

Qk+1 =
D − P2

k+1
Qk

for k ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 = α

xk+1 =
Pk+1 +

√
D

Qk+1
for k ≥ 0

⎧⎪⎪⎨⎪⎪⎩

a0 = ⌊x0⌋
ak+1 = ⌊xk+1⌋ for k ≥ 0

such that

(i) α = [a0, a1, a2, a3, . . . ]
(ii) Qk ≠ 0 for k ≥ 0

(iii) both Qk and Qk+1 divide D − P2
k+1

Proof. We can prove by induction (ii), (iii) and that they are sequences of in-
tegers. Consider the base case, here a0, P0 and Q0 are integers by definition.
Moreover Q0 ≠ 0 and Q0 divides D − P2

0 since α is in canonical form, thus

Q1 =
D − P2

1
Q0

=
D − a2

0Q2
0 − P2

0 + 2a0Q0P0

Q0
=
(D − P2

0 )+Q0(a2
0Q0 − 2a0P0)

Q0

and Q1 is an integer with Q0Q1 = D − P2
1 , proving Q0 and Q1 divide D − P2

k+1.
Then P1 is also an integer. Consider a generic k. We immediately get that
Pk+1 is an integer by the (k − 1)-th step. Assume by absurd Qk+1 = 0, then by
construction D −Qk+1 = 0 and D is a square which is impossible. Also

Qk+1 =
D − P2

k+1
Qk

=
D − a2

kQ2
k − P2

k + 2akQkPk

Qk
=
(D − P2

k )+Qk(akQ2
k − 2QkPk)

Qk

=
Qk−1Qk +Qk(a2

kQk − 2akPk)
Qk

so Qk+1 is an integer, and we get again QkQk+1 = D − P2
k+1.

We need to prove that the (xk) are irrationals and the (ak) form the simple
continued fraction expansion of α. It is easier to prove that one step of this
algorithm is equivalent to one step of the algorithm from Theorem 2.13,

xk − ak =
Pk +
√

D
Qk

− ak =
Pk +
√

D − akQk
Qk

=
√

D − Pk+1

Qk

=
√

D − Pk+1

Qk

(
√

D + Pk+1)
(
√

D + Pk+1)
=

D − P2
k+1

Qk (
√

D + Pk+1)
= Qk+1√

D + Pk+1
= 1

xk+1

and with the notation of Theorem 2.13 we get ek = xk − ak, xk+1 = 1/ek.
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Algorithm 2.32 (Quadratic irrational Continued Fraction expansion)

in: quadratic irrational α in canonical form

1. fix P0 ← P, Q0 ← Q, x0 ← α, a0 ← ⌊x0⌋
2. iteratively calculate Pk+1, Qk+1, xk+1, ak+1

3. α = [a0, a1, a2, a3, . . . ]

Consider for example the quadratic irrational

α = 3+
√

11
2

It is easy to see that α is in canonical form, so we can apply Lagrange’s algo-
rithm with P0 = 3, Q0 = 2, x0 = α, a0 = 3.

Lagrange’s algorithm irrational algorithm
i Pi Qi xi ai xi ei ai
0 3 2 3.15831. . . 3 3.1583. . . - 3
1 3 1 6.31662. . . 6 6.31662. . . 0.31662. . . 6
2 3 2 3.15831. . . 3 6.31662. . . 0.15831. . . 3
⋮
12 3 1 6.31662. . . 6 3.07595. . . 0.32510. . . 6
13 3 2 3.15831. . . 3 13.16698. . . 0.07595. . . 3
14 3 1 6.31662. . . 6 5.98863. . . 0.16698. . . 13
15 3 2 3.15831. . . 3 1.01150. . . 0.98863. . . 5

Figure 2.2: Comparison of the ai from the two algorithms.

We can see that the new algorithm provides a remarkable stability for quadratic
irrationals thanks to the three integer sequences. Being theoretically equiva-
lent to the “classical” irrational algorithm2, it also gives an easier approach for
proofs involving quadratic irrationals.

2It is indeed theoretically equivalent, but not computationally. This is due to floating point
arithmetic slowly poisoning the results, as we saw above
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Problem 4 (Periodicity) When is the continued fraction expansion of
a real number α periodic?

Quadratic irrationals have a close relation with periodic continued fractions.
We will borrow the terminology used for the periodicity of p-adic expansions:
a continued fraction is purely periodic if its terms have no pre-period, and
(eventually) periodic if they have periodic behaviour after some pre-period.

Theorem 2.33 (Euler) If a real number α has an eventually periodic continued
fraction expansion, then α is a quadratic irrational.

Proof. Assume α = [a0, a1, . . . , aj−1, aj, aj+1, . . . , aj+k−1], fix xj = [aj, aj+1, aj+2, . . . ].

xj = [aj, aj+1, aj+2, . . . ] = [aj, aj+1, . . . , aj+k−1] = [aj, aj+1, . . . , aj+k−1, xj+k]

= [aj, aj+1, . . . , aj+k−1, xj] =
xj pn + pn−1

xjqn + qn−1

so xj is root of x2qn + x(qn−1 − pn)− qn−1 and a quadratic irrational. If the pre-
period is non-zero (i.e. j − 1 ≠ 0), then remark that α is the image of the linear
fractional transformation L applied on xj

xj z→ L(xj) =
xj pj−1 + pj−2

xjqj−1 + qj−2

This is well-defined if pj−1qj−2 − pj−2qj−1 ≠ 0, which is 1 in our case. More
importantly, L is defined in xj since xjqj−1 + qj−2 = 0 would imply xj ∈ Q.
Finally, due to Lemma 2.30 α is a quadratic irrational.

Theorem 2.34 (Lagrange) If α is a quadratic irrational, then it has a periodic
continued fraction expansion.

Proof. We will exploit the sequences arising from Theorem 2.31.

Step 1. If k is large enough, Qk > 0. Consider α = [a0, a1, . . . , an, xk] as be-
fore for some n ≥ 1. We can consider xk as a partial quotient and write

α =
xk pk−1 + pk−2

xkqk−1 + qk−2

where both α and xk are quadratic irrationals with the same radical term
√

D.

α = (
xk pk−1 + pk−2

xkqk−1 + qk−2
) =

xk pk−1 + pk−2

xkqk−1 + qk−2
=

xk pk−1 + pk−2

xkqk−1 + qk−2

Therefore, if we search for the closed form of xk,

α (xkqk−1 + qk−2) = xk pk−1 + pk−2

xk (αqk−1 − pk−1) = pk−2 − αqk−1

xk =
pk−2 − αqk−1

αqk−1 − pk−1
=
−1

qk−2
(α − pk−2

qk−2
)

1
qk−1
(α − pk−1

qk−1
)
= −

qk−2

qk−1

α − pk−2
qk−2

α − pk−1
qk−1

xk ÐÐÐÐ→
k→+∞

−
qk−2

qk−1

α − α

α − α
= −

qk−2

qk−1
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where the last step holds because α ≠ α for a quadratic irrational. Since the qk
are positive for a large k, xk is eventually negative. But xk > 0, so xk − xk > 0 so

0 < xk − xk =
Pk +
√

D
Qk

− Pk −
√

D
Qk

= 2
√

D
Qk

implying Qk > 0.

Step 2. If k is large enough, Qk only assumes finitely many values.
From the algorithm QkQk+1 = D − P2

k+1 ≤ D, but for a large enough k we have
Qk+1 ≥ 1 and Qk > 0. Then

D ≥ QkQk+1 ≥ Qk > 0

so Qk eventually lies in [0, D].

Step 3. If k is large enough, Pk only assumes finitely many values.
Remark that eventually Qk−1Qk > 0, hence

P2
k < P2

k +Qk−1Qk = D

and Pk lies in [0,
√

D].

Step 4. The pair (Pk, Qk) can only assume finitely many values. We will sooner
or later reach two distinct indices i < j with (Pi, Qi) = (Pj, Qj), in which case
xi = xj and ai = aj. All successive pairs will be equal by construction.

There is something more we can say for the expansion of a particular class of
quadratic irrationals. See Olds [27] for a proof.

Proposition 2.35 (Galois) A quadratic irrational α is called reduced if both
α > 1 and α ∈ (−1, 0). The expansion of a quadratic irrational α is purely periodic
if and only if α is reduced.

One can actually exploit the theorem of Galois to prove Lagrange’s. Our
“standard” approach proved there is a finite number of quadratic irrationals
the complete quotients can go through, which is equivalent to them reaching
a reduced quotient at a certain step: the algorithm then starts being periodic.
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We are already familiar with p-adic numbers. They were first formally in-
troduced by Kurt Hensel (1897) in his article Über eine neue Begründung der
Theorie der algebraischen Zahlen [15] while trying to expand the analytical the-
ory of complex (Laurent) power series to algebraic number theory.

At this point, we are also very familiar with continued fractions and their
core properties. It is just natural to attempt a generalisation in Qp: by our
standards it is just a sinister twin of R, but we will find out that this is more
than enough to set us back. Remark that defining any algorithm cfrac return-
ing some sequence (bi)I ← cfrac(α) is not enough: it must first be well-posed,

(P0) Convergence. The algorithm converges, i.e. if (bi)I ← cfrac(α) then in
the normed space (Qp, ∣ ⋅ ∣p) we have limn→∞ bn = α.

and secondly, while not mandatory, it would be nice to also achieve those
properties that we found useful in R. For instance those describing α:

(P1) Finiteness for rationals. The algorithm terminates with a rational input
α, i.e. if α is in Q and (bi)I ← cfrac(α) then I = {0, 1, 2, . . . , n}. This is
well-posed since Qp contains a copy of Q.

(P2) Periodicity. The algorithm satisfies an analogue of Euler’s and La-
grange’s theorems (respectively Theorems 2.33 and 2.34), i.e. (bi)I is
periodic if and only if α is a quadratic irrational. Euler’s side always
holds, the proof uses universal arguments. We focus on Lagrange’s side.

Here we used the notation of canonical continued fractions, but this can be
effortlessly extended to generalised continued fractions. For the sequences of
partial quotients, we will use the author’s notation in each algorithm. For
example, Browkin uses (bi)I and Schneider (ci ∶ bi)I instead.

The contents on p-adic continued fractions are based on the articles by Browkin
[5, 6], Ruban [37], Schneider [39] and a survey by Romeo [36]. Others will be
cited as needed.
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3.1 A tale of floor functions
A small summary of the first most notable algorithms.

Notation 3.1 When describing Z/pZ as being adjoined to a set S, we
implicitly mean that S is chosen as complete set of representatives for Z/pZ.

In 1940, Kurt Mahler questioned whether
a p-adic analogue to the continued fraction
algorithm in R was possible ([24], On a
geometrical representation of p-adic numbers)
and provided some generic properties.
Many attempts came after.

The year 1969 was most profitable for
humanity: we witnessed the Moon Land-
ing, and Schneider provided in his article
Über p-adische Kettenbruche [39] a continued
fraction algorithm for Zp.

Schneider used {0, 1, . . . , p − 1} as representative set for Zp and exploited the
ultrametric distance to gradually approximate α. This procedure mimics the
inverse limit definition of Zp. His algorithm does not return a canonical con-
tinued fraction.

Modern attempts focus on Lagrange’s universal structure: iteratively set

⎧⎪⎪⎨⎪⎪⎩

bi = floor(αi)
αi+1 = 1

αi−bi

This algorithm requires an analogue of the real floor function in Qp.
Let us see some examples.

(A) In R, we are used to having ⌊7.3⌋ = ⌊3 × 10−1 + 7 ⋅ 101⌋ = 7. One can see
this as “returning the positive powers in the series”, which represent the
integer part. In Qp, this becomes

floorA ∶
+∞
∑

i=−k
ai p

i z→
+∞
∑
i=0

ai p
i

Consider p = 3 for example, fix α = 2p−1 + p0 + 2p1 + p2 = 50/3,

floorA (2p−1 + p0 + 2p1 + p2) = p0 + 2p1 + p2 = 16

(B) Intuitively, the real floor can also be seen as “returning the part of in-
tegral norm”. Remark that in Qp a positive norm ∣α∣p = p−νp(α) corre-
sponds to a negative valuation, so it is reasonable to write

floorB ∶
+∞
∑

i=−k
ai p

i z→
0
∑

i=−k
ai p

i
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With the same example,

floorB (2p−1 + p0 + 2p1 + p2) = 2p−1 + p0 = 5
3

which has norm ∣5/3∣p = 3.
(C) We can proceed exactly as in (B), but ignore the element of null valua-

tion. This returns again something of positive norm.

floorC ∶
+∞
∑

i=−k
ai p

i z→
−1
∑

i=−k
ai p

i

floorC (2p−1 + p0 + 2p1 + p2) = 2p−1 = 2
3

The first notable attempt was by A.A. Ruban in his 1970 article Nekotoye

metriceskie svo�stva p-adiqeskih čised (Certain metric properties of the p–adic
numbers) [37], only found in Russian. Fixing {0, 1, . . . , p − 1} as representative
set for Z/pZ, he defined the following floor function.

Definition 3.2 (Ruban’s r function) Fix α = ∑i ai pi ∈ Qp for coefficients ai in
{0, 1, . . . , p − 1}. Ruban’s r function is

r ∶ Qp Ð→ Q

α =
+∞
∑

i=−k
ai p

i z→ r(α) =
0
∑

i=−k
ai p

i

Remark how this is exactly the intuitive generalisation floorB from (B).
In 1978, Jerxy Browkin defined a similar function in Continued Fractions in
Local Fields I [5] only differing in the choice of representative set.

Definition 3.3 (Browkin’s s function) Fix α = ∑i ai pi ∈Zp for coefficients ai in
{−(p − 1)/2, . . . , (p − 1)/2}. Browkin’s s function is

s ∶ Qp Ð→ Q

α =
+∞
∑

i=−k
ai p

i z→ s(α) =
0
∑

i=−k
ai p

i

Again, this follows the intuitive idea from (B). Remark how Browkin’s s only
differs from Ruban’s r in the choice of representatives for Z/pZ. Theorem
1.52 states that this only affects the representation of α in Qp. We will prove
that it has heavy implications in the properties of the sequence (bi)I , and so
does having a floor function such that the set floor(Qp), in which lie the bi,
only contains elements of integral norm.

In his 2001 article “Continued Fractions in Local Fields II” [6], Browkin famously
provided another one [6], which is the one from example (C).

Definition 3.4 (Browkin’s t function) Fix α = ∑i ai pi ∈ Qp for coefficients ai in
{−(p − 1)/2, . . . , (p − 1)/2}. Browkin’s t function is

t ∶ Qp Ð→ Q

α =
+∞
∑

i=−k
ai p

i z→ t(α) =
−1
∑

i=−k
ai p

i

[ 54 of 94 ]



Chapter 3. Continued fractions in Qp

These two choices result in two algorithms called (respectively) “Browkin I”
and “Browkin II”. Browkin II is more complex than its predecessor due to the
use of the sign function, the dependence on n and a convoluted use of both s
and t, motivated by the convergence requirement (P0):

floor(αn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s(αn) if n even
t(αn) if n odd and νp(αn − t(αn)) = 0
t(αn)− sign(t(αn)) if n odd and νp(αn − t(αn)) ≠ 0

In the next sections, we will see how these algorithms perform. All satisfy the
strong requirement (P0). Browkin I and Browkin II are the only ones satisfying
the soft requirement (P1) and without counterexamples to (P2), therefore most
modern approaches start from them. This is represented in Table 3.1. A recent
survey by Romeo [36] addressed proving (P2) for Browkin I and II as one of
the most challenging open problems in this field.
Some authors recently generalised continued fractions to P-adic continued
fractions for prime ideals P, see Capuano, Murru, Terracini [8].

property Schneider Ruban Browkin I Browkin II
convergence (P0)

finiteness in Q (P1)
periodicity (P2) ? ?

Table 3.1: The main algorithms and their properties.

We conclude with some examples of all algorithms except Schneider’s, which
is more complex and will be presented in Section 3.8. Consider 2/3 in Q7, the
steps in Ruban’s algorithm are

⎧⎪⎪⎨⎪⎪⎩

α0 = α = 2
3 = 3+ 2p + 2p2 + 2p3 + . . .

b0 = 3

⎧⎪⎪⎨⎪⎪⎩

α1 = 1
α0−b0

= 4p−1 + 6+ 6p + 6p2 + 6p3 + . . .

b1 = 4p−1 + 6 = 46
7

⎧⎪⎪⎨⎪⎪⎩

α2 = 1
α1−b1

= 6p−1 + 6+ 6p + 6p2 + 6p3 + . . .

b2 = 6p−1 + 6 = 48
7

⎧⎪⎪⎨⎪⎪⎩

α3 = 1
α2−b2

= 6p−1 + 6+ 6p + 6p2 + 6p3 + . . .
b3 = 6p−1 + 6 = 48

7

which loops, returning the expansion [3, 46/7, 48/7]. The steps for Browkin I
are almost identical, we just need to adapt to the new set of representatives
{−3,−2,−1, 0,+1,+2,+3} in each calculation.

⎧⎪⎪⎨⎪⎪⎩

α0 = α = 2
3 = 3+ 2p + 2p2 + 2p3 + . . .

b0 = 3
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α1 = 1
α0−b0

= 4p−1 + 6+ 6p + 6p2 + 6p3 + . . .

α1 = −3p−1 + 0+ 0p + 0p2 + 0p3 + . . .
b1 = −3p−1 = − 3

7

since α1 = b1 the algorithm terminates, returning [3,−3/7]. Browkin II has a
convoluted floor function which depends on n and the sign function.

⎧⎪⎪⎨⎪⎪⎩

α0 = α = 2
3 = 3+ 2p + 2p2 + 2p3 + . . .

b0 = s(α0) = 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α1 = 1
α0−b0

= 4p−1 + 6+ 6p + 6p2 + 6p3 + . . .

α1 = −3p−1 + 0+ 0p + 0p2 + 0p3 + . . .
t(α1) = −3p−1 = − 3

7
b1 = −3p−1 − sign(t(α1)) = 4

7

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α2 = 1
α1−b1

= 6p−1 + 6+ 6p + 6p2 + 6p3 + . . .

α2 = −1+ 0p + 0p2 + 0p3 + . . .
b2 = s(α2) = −1

and again the algorithm stops, having reached α2 = b2. The expression is
[3, 4/7,−1]. It is a general fact that all odd bi are rationals and even bi are inte-
gers [36]. Below, some further examples. With the notation α = [b0, b1, b2, . . . ]p,
we implicitly mean that the algorithm is in Qp with the appropriate defining
set. For example, a Ruban-type α = [b0, b1, b2, . . . ]p requires {0, . . . , p − 1}.

α Schneider Ruban Browkin I Browkin II

71
17

⎡⎢⎢⎢⎣
27
1

3
1

3
1

3
1

3
1

3
1

3
2

⎤⎥⎥⎥⎦3
[1, 49

27 , 7
3 , 8

3 ]3 [1,− 32
27 , 2

3]3 [1,− 5
27 ,−1,− 2

3 , 1]3

2
3

⎡⎢⎢⎢⎣
11
8

11
4

11
9

11
10

⎤⎥⎥⎥⎦11
[8, 59

11 , 58
11 , 120

11 ]11
[−3, 3

11]11 [−3,− 8
11 , 1]11

These are of course chosen to put an emphasis on their properties. Remark
how all but Browkin I and Browkin II have periodical expansions for rationals.

3.2 Generalised continued fractions
On the properties of their associated sequences.

In R, the theory can be naturally extended from rational continued fractions
(Algorithm 2.5), which conveniently meant they were in canonical form. We
had no need to work with the general object.
There is no reason to assume their form a priori in Qp, so we will provide some
results on generalised continued fractions and their associated sequences.
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Consider a generalised continued fraction, which is an object of form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

for two sequences (ai)I∗ and (bi)I of numerators and denominators in Qp,
where I∗ = I ∖ {0}. If one index set is finite, the other is also finite. This
notation is usually shortened to

[a1 a2 a3 . . .
b0 b1 b2 b3 . . .]

or simply [b0, a1 ∶ b1, a2 ∶ b2, a3 ∶ b3, . . . ]. The following few results are an exact
analogue to generalised continued fractions in R.

Definition 3.5 (generalised convergents) Consider a continued fraction ex-
pansion [b0, a1 ∶ b1, a2 ∶ b2, a3 ∶ b3, . . . ], not necessarily finite. We define

Ci = [b0, a1 ∶ b1 . . . , ai ∶ bi] = b0 +
a1

b1 +⋱
ai−1

bi−1 +
ai

bi

as its i-th convergent. If I = [0, 1, . . . , k] is finite, then Ck+1 is undefined and
the sequence (Ci)I is finite.

We define two sequences (An)I , (Bn)I of elements An = An(b0, . . . , an, bn) and
Bn = Bn(b0, . . . , an, bn) satisfying the following recursions:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A0 = b0

A1 = b0b1 + a1

An+2 = bn+2 An+1 + an+2 An for n ≥ 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B0 = 1
B1 = b1

Bn+2 = bn+2Bn+1 + an+2Bn for n ≥ 0

Lemma 3.6 The recursive definitions above are equivalent to

(An An−1
Bn Bn−1

) = (b0 1
1 0)(

1 0
0 a1

)(b1 1
1 0) ⋯ (

1 0
0 an

)(bn 1
1 0)

Proof. By induction,

(A1 A0
B1 B0

) = (b0 1
1 0)(

1 0
0 a1

)(b1 1
1 0) = (

b0b1 + a1 b0
b1 1 )

and the inductive step for n ≥ 2 is

(An An−1
Bn Bn−1

) = (b0 1
1 0)(

1 0
0 a1

)(b1 1
1 0) ⋯ (

1 0
0 an

)(bn 1
1 0)

= (An−1 An−2
Bn−1 Bn−2

)(1 0
0 an

)(bn 1
1 0)

= (bn An−1 + an An−2 An−1
bnBn−1 + anBn−2 Bn−1

)
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Corollary 3.7 If (An)I and (Bn)I satisfy the recursive definitions above,

det(An An−1
Bn Bn−1

) = (−1)n+1a1⋯an

Proof. The determinant of these matrices is −1 if they contain any bi and ai if
they contain any ai. There are respectively n + 1 and n of them.

Lemma 3.8 Cn = An/Bn, this justifies defining the An as partial numerators
and the Bn as partial denominators.

Proof. Similar to the proof in the real case. The base case is

C0 =
A0

B0
= b0

1

For the inductive step we exploit again non-unicity in the representation:

Cn+1 = [b0, a1 ∶ b1, . . . , an ∶ bn, an+1 ∶ bn+1]

= [b0, a1 ∶ b1, . . . , an ∶ (bn +
an+1

bn+1
)]

=
(bn + an+1

bn+1
)An−1 + an An−2

(bn + an+1
bn+1
)Bn−1 + anBn−2

= bn+1(bn An−1 + An−2)+ an+1 An−1

bn+1(bnBn−1 + Bn−2)+ an+1Bn−1

= bn+1 An + an+1 An−1

bn+1Bn + an+1Bn−1
= An+1

Bn+1

If the continued fraction is simple, we showed in Section 2.3 that some varia-
tions of these results hold. They only rely on the recurrent formulas, so they
are (mostly) universal and hold in Qp. But we cannot assume that all bi are
positive: this makes arguments based on signs not transferable in Qp.

3.3 Partial quotients of negative valuation
On their importance in the construction of an algorithm.

We can provide some further results when the bi have negative valuation (ex-
cept eventually the first b0). This implies that their p-adic norms are integral:
this reasoning lead in Section 3.1 to floor functions floorB(⋅) and floorC(⋅). We
will prove it is a sensible requirement and floorA(⋅) was not a good candidate.

First, consider what happens under these conditions.

Lemma 3.9 If b1, b2, b3 . . . have negative valuation, for all n ≥ 1

νp(Bn) = νp(b1)+ ⋅ ⋅ ⋅ + νp(bn)
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Proof. The inductive base is νp(B1) = νp(b1). For a generic n > 1,

νp(bn+2Bn+1) = νp(bn+2)+ νp(Bn+1) = νp(bn+2)+ νp(b1)+ ⋅ ⋅ ⋅ + νp(bn+1)

νp(Bn+2) = νp(bn+2Bn+1 + Bn) =min{νp(bn+2Bn+1), νp(Bn)} = νp(bn+2Bn+1)

where νp(bn+2Bn+1) < νp(Bn) being them respectively the sum of n + 1 and n
strictly negative terms.

Lemma 3.10 If b1, b2, b3 . . . have negative valuation and b0 ≠ 0, for all n ≥ 0

νp(An) = νp(b0)+ νp(b1)+ ⋅ ⋅ ⋅ + νp(bn)

and if b0 = 0 then for all n ≥ 2

νp(An) = νp(b2)+ νp(b3)+ ⋅ ⋅ ⋅ + νp(bn)

Proof. Assume b0 ≠ 0. This is similar to the previous lemma, but with A0 = b0.
If νp(b0) = 0, then b0 = 1 and the result still follows. If νp(b0) < 0 the results
follows exactly as before. Finally, νp(b0) > 0,

νp(A0) = νp(b0)
νp(A1) = νp(b0b1 + 1) =min (νp(b0b1), νp(1)) = νp(b0)+ νp(b1)

and induction follows as above. If b0 = 0 then νp(b0) = +∞, but recursively

A0 = b0 = 0
A1 = b1b0 + 1 = 1
A2 = b2b1b0 + b2 + b0 = b2

⋮

so we can proceed in the same way, just with b2 instead of b0 as first element
in the dominating term of any An.

Corollary 3.11 If b1, b2, b3 . . . have negative valuation and b0 ≠ 0, for all n ≥ 0

∣An∣p =
n
∏
k=0
∣bk∣p ∣Bn∣p =

n
∏
k=1
∣bk∣p

Corollary 3.12 Under these assumptions, if b0 ≠ 0 all An and Bn are non-zero.
If b0 = 0, this still holds but with n ≥ 2 for the An.

Proof. This is trivial for the Bn. If An = 0 instead, then νp(An) = +∞ by
definition but this is impossible due to the formula in Lemma 3.10.

Browkin [5] proves that under this condition the algorithm is well-defined,
i.e. if the expansion [b0, b1, b2, . . . ] of α dictated by the (bi)I converges then it
converges to α. This means that the algorithm is well-posed.

Theorem 3.13 (Browkin’s convergence I) If (bi)I consists of elements with
negative valuation except b0, then the sequence (Cn)I converges to a β ∈ Qp
such that νp (β −Cn) = νp(BnBn+1) for n ≥ 0.
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Proof. Concerning the difference of consecutive terms,

Cn+1 −Cn =
An+1

Bn+1
− An

Bn
= An+1Bn − AnBn+1

BnBn+1

= bn+1 (AnBn − AnBn)+ (Bn An−1 − AnBn−1)
BnBn+1

= (−1) (AnBn−1 − Bn An−1)
BnBn+1

= (−1)n

BnBn+1

νp (Cn+1 −Cn) = νp (
An+1

Bn+1
− An

Bn
) = νp (

(−1)n

BnBn+1
) = −νp (BnBn+1)

which is greater than zero and increasing due to Lemma 3.9. This proves that
(Ci)I is a Cauchy sequence in p-adic norm. Moreover for m > n

νp (Cm −Cn) = νp (Cm −Cm−1 +Cm−1 −Cm−2 +Cm−2 ⋅ ⋅ ⋅ −Cn)
= νp (Cm −Cm−1 +Cm−1 −Cm−2 +Cm−2 ⋅ ⋅ ⋅ −Cn)
=min [νp (Cm −Cm−1) , . . . νp (Cn+1 −Cn) ]
= νp (Cn+1 −Cn) = −νp (BnBn+1)

and if we define β ∈ Qp as its limit we get the thesis.

In particular, this also means that

∣C1 −C0∣p = pνp(B1B0) < 1

since νp(B1B0) = νp(b1) < 0, and at the n-th step

∣Cn+1 −Cn∣p = pνp(Bn+1Bn) < 1

and the sequence (Bn+1Bn)I provides a approximation quality bound.

Theorem 3.14 (Browkin’s convergence II) If the algorithm does not terminate
(i.e. I is infinite) with input α, then (Ci)I converges in Qp and its limit is α.

Proof. Consider again α = α0 = [b0, b1, b2, b3, . . . , bn, αn+1]. Then

α = An+1(b0, b1, . . . , αn+1)
Bn+1(b0, b1, . . . , αn+1)

= αn+1 An + An−1

αn+1Bn + Bn−1

α −Cn =
αn+1 An + An−1

αn+1Bn + Bn−1
− An

Bn
= An−1Bn − AnBn−1

(αn+1Bn + Bn−1)Bn
= (−1)n

(αn+1Bn + Bn−1)Bn

and since
νp(αn+1Bn + Bn−1) = νp(bn+1Bn + Bn−1) = νp(Bn+1)

we have that

νp (α −Cn) = νp (
(−1)n

(αn+1Bn + Bn−1)Bn
) = −νp(Bn+1)− νp(Bn)

which tends to infinity, therefore ∣α −Cn∣p tends to 0.
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All the above proves that it is desirable for an algorithm to have partial quo-
tients of negative valuation. This requirement is not too restrictive: Ruban,
Browkin I and Browkin II all satisfy this property.

Fix p ≠ 2 a prime. Consider the localisation of Z at its prime ideal P =< p >.
Such ring is usually denoted as ZP , P−1Z or Z [1/p]. We will use the latter for
convention and convenience.

Definition 3.15 The ring of s-integers is

Z [1/p] = { a
pk such that a ∈Z, k ∈N}

The name is justified by an analogous construction in number fields which we
will not investigate further.

Lemma 3.16 Z [1/p] is a subring of Qp.

Proof. It is a ring under the same operations. Consider now any α = a/pk in
Z [1/p], writing a as a power series in Zp we get

a
pk =

∑+∞i=0 ai pi

pk =
+∞
∑
i=0

ai p
i−k =

+∞
∑

j=−k
bj p

j

with bj = ai−k, so α lies in the field of fractions of Zp which is Qp.

Browkin’s choices have s(α) ∈Z [1/p] and t(α) ∈Z [1/p] for any α in Qp. Further,
due to the choice of representatives, the following holds.

Lemma 3.17 For any α in Qp,

(i) r(α) lies in Z [1/p]∩ [0, p)
(ii) s(α) and t(α) lie in Z [1/p]∩ (−p/2,+p/2)

Proof. Consider Ruban’s r, we have r(α) = ∑0
i=−k ai pi and due to the choice of

representatives this is lower-bounded by 0 and upper-bounded by

0
∑

i=−k
(p − 1)pi = (p − 1)

k
∑
i=0

p−i = (p − 1)
1− p−k

1− p−1 = (p − 1)
pk − 1

pk − pk−1 = p − 1
pk−1

Browkin’s s is easier to treat with the Euclidean norm,

∣s(α)∣∞ =
RRRRRRRRRRR

0
∑

i=−k
ai p

i
RRRRRRRRRRR∞
≤

0
∑

i=−k
∣ai p

i∣
∞
<

p − 1
2

0
∑

i=−k
pi =

p − 1
2

k
∑
i=0

p−i =
p
2
− 1

2pk−1

and the same holds for Browkin’s t.

An immediate consequence is that Ruban and Browkin I all return partial
quotients bi which are either null or negatively valued. Moreover, since s is
such that νp(α − s(α)) > 0,

νp(αn+1) = νp (
1

αn − s(αn)
) = −νp (

1
αn − s(αn)

) < 0
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If b0 ≠ 0 all partial quotients bi have negative valuation. If b0 = 0 instead,
this means that νp(α0) > 0, but then νp(α1) = νp(1/α0) is negative: all next bi
have negative valuation. This also holds for Ruban’s algorithm, which uses r
instead.

Corollary 3.18 Ruban and Browkin I return partial quotients (bi)I such that
for i ≥ 1 their norms are ∣bi∣p ≥ 1 and ∣bi∣∞ < p/2.

The reasoning is more complex for Browkin II, since Browkin’s t is used in
combination with s and the floor function. This was proved by Browkin in [6].

Lemma 3.19 Browkin II returns partial quotients (bi)I such that

νp(b2i) = νp(α2i) = 0

νp(b2i+1) = νp(α2i+1) < 0

Proof. Recall that in Browkin II

floor(αn) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s(αn) if n even
t(αn) if n odd and νp(αn − t(αn)) = 0
t(αn)− sign(t(αn)) if n odd and νp(αn − t(αn)) ≠ 0

For an odd n, νp(bn) < 0 holds by construction since the sign function does
not change the valuation, νp(±1) = 0 but νp(αn) < 0. For an even n, notice how
αn−1 − bn−1 in step n − 1 is constructed to have null valuation, implying that at
the n-th step νp(αn) = −νp(αn−1 − bn−1) = 0 and s(αn) is a non-zero element of
the representative set {−(p − 1)/2, . . . ,+(p − 1)/2}.

This also implies what we remarked in Section 3.1: all partial quotients are
by construction a fraction with just a power of p at the denominator, so even
partial quotients are integers.

3.4 P0, convergence property
A necessary and sufficient condition for output convergence in Qp.

Property P0 is the first meaningful requisite for any well-behaving continued
fraction algorithm in Qp.

(P0) If (bi)I ← cfrac(α), then (bi)I converges in Qp to α.

Since we are studying algorithms with negatively valued partial quotients,
from the results of the previous Section (Theorem 3.14) this property can be
reduced to the following:

(P0’) If (bi)I ← cfrac(α), then (bi)I converges in Qp.

Theorem 3.20 Consider the partial numerators and denominators (An)I and
(Bn)I uniquely defined by the partial quotients (bi)I of the algorithm. The algo-
rithm converges in Qp, i.e. (P0) holds, if and only if

lim
n→+∞

νp (BnBn+1) = −∞
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Proof. We need to prove that the convergents (Cn)I are a Cauchy sequence in
the ultrametric space Qp. From Lemma 1.25, we know that this is equivalent
to requiring

lim
n→+∞

∣Cn+1 −Cn∣ = 0

which can be written as

lim
n→+∞

νp (
An+1Bn − AnBn+1

Bn+1Bn
) = lim

n→+∞
νp (

(−1)n

Bn+1Bn
) = +∞

and is exactly the thesis.

In the algorithms constructed following Lagrange’s, we put bi = floor(αi) for a
chosen function floor( ⋅ ) posing as the real ⌊ ⋅ ⌋. Theorem 3.20 justifies our pre-
vious remarks on the “trivial choice” for floor( ⋅ ) returning only the positive
powers of p in the expression of α,

νp (BnBn+1) = νp(Bn)+ νp(Bn+1)
= [νp(b1)+ ⋅ ⋅ ⋅ + νp(bn)]+ [νp(b1)+ ⋅ ⋅ ⋅ + νp(bn)+ νp(bn+1)]
= 2νp(b1)+ ⋅ ⋅ ⋅ + 2νp(bn)+ νp(bn+1)

which for n → +∞ diverges to +∞, proving this function to be a poor choice.
Consider instead the case νp(bi) < 0 for i = 1, 2, 3, . . . , arising from Ruban’s and
Browkin’s functions r and s. From the equation of Lemma 3.9,

νp(Bn) = νp(b1)+ ⋅ ⋅ ⋅ + νp(bn) < 0 for n ≥ 1

and the same reasoning proves the following sufficient condition.

Lemma 3.21 If b1, b2, b3, . . . have negative valuation, the algorithm converges.
This does not depend on the valuation of b0.

Remark how this is a sufficient criterion, not a necessary one. For example, it
could be relaxed to the following.

Corollary 3.22 If the (bi)I eventually (i.e. from a certain N ∈ N) satisfy
Lemma 3.21, the algorithm converges.

Corollary 3.23 If the (bi)I satisfy Lemma 3.21 except for a subsequence of
negative valuation, the algorithm converges.

Having an algorithm satisfying either Theorem 3.20 or one of Corollaries 3.22
and 3.23 completes the study of convergence in (Qp, ∣ ⋅ ∣p).
These results, however, tell us nothing about convergence of (bi)I in (R, ∣ ⋅ ∣∞).
If the sequence satisfies it, the condition only states that we will slowly factor
out all powers of p from Bn+1Bn, but we know nothing about other factors.
This gives rise to the following open problem.

Problem 5 (Convergence problem) Consider a p-adic continued frac-
tion algorithm satisfying convergence property (P0) in Qp.
Does its output (bi)I also converge in R?
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3.5 P1, finiteness property
A short remark on finite continued fraction expansions.

Property P0 is an implicit requirement for any well-posed algorithm.
Properties P1 and P2, respectively finiteness on rationals and periodicity on
quadratic irrationals are not compulsory, but desirable for an analogue to the
algorithm in R.

(P1) Finiteness for rationals. If α is in Q ⊆ Qp and (bi)I ← cfrac(α), then
I = {0, 1, 2, . . . , n} is finite.

This is a reasonable requirement: remark again that both R and Qp contain a
copy of Q, so when dealing with the immersion Q ↪ Qp we can consider its
domain as the usual rationals.

If I = {0, . . . , k}, then [b0, b1, . . . , bk] represents a rational: just backtrace the
consecutive divisions to a fraction. This only uses universal arguments. Since
the other side of property P1 always holds, we can only concern ourselves
with the given implication.
P1 was proved in R using the fact that remainders (ri)I from Euclidean
division formed a decreasing sequence of integers. A similar strategy has
been used by Browkin [5] and Barbero, Cerruti, Murru [4] for Browkin I and
Browkin II, albeit on different sequences.

3.6 Real and p-adic quadratic irrationals
On a number theoretical approach to real quadratic irrationals

and to their p-adic analogue.

This is an introduction to p-adic quadratic irrationals based on personal re-
marks on the book by Robert [35, Section 6.6] and Browkin’s article [5].

Let us first recall what happens in R.
Real quadratic irrationals are irrational roots of an irreducible quadratic poly-
nomial f of integral coefficients, meaning that they lie in P ∶= R ∖Q. If we
consider Q as a field and

Q(α) ∶= {a + bα for a, b ∈ Q}

as a Q-vector field, this is equivalent to [Q(α) ∶ Q] = 2. For example, we know
f (x) = x2 − x − 1 has irrational roots φ and ψ. Since f is quadratic, irreducible
and monic, it is also their minimal polynomial and Q(

√

5)/Q is both a field
extension of order 2 and a Q-vector space of power base {1, φ}. These two are

v1 = (
1
0) vφ = (

1/2
1/2)

if represented with basis {1,
√

5}. Something similar happens if we try {1, ψ},
therefore the are the same vector space and our extension has the following
structure.
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Q(φ) Q(
√

5) Q(ψ)

Q

Q (
√

5) = Q(1+
√

5
2
) = Q (φ)

= Q(1−
√

5
2
) = Q (ψ)

Pick α = φ. Being a finite extension of Q, then Q(α) is also a number field.
One usually exploits algebraic number theory to study the properties of such
extensions in a more general setting, where [Q(α) ∶ Q] = n. We will see why
the case n = 2 is of our interest.

Each β ∈ Q(φ) has some basis-invariant properties: one of them is the min-
imal polynomial, others are norm and trace, descending from matrices. We
can associate a matrix M(β) to β representing multiplication by it in Q(φ). In
our degree-two extension, one basis is {e1, e2} = {1,

√
5} and β = a + b

√
5. The

entries of row i are the components of βei in order.

M(β) = ( a b
5b a)

We define trace of β and (algebraic) norm of β as respectively trace and
determinant of M(β), which are basis-invariant.

trace(β) = 2a = (a +
√

b)+ (a −
√

b)

norm(β) = a2 − 5b2 = (a +
√

b) ⋅ (a −
√

b)

Finally, if we pick σ ∈ G(Q(α)/Q) such that

σ (
√

D) = −
√

D

σ(q) = q for q ∈ Q

then β conjugate of β is defined as σ(β). If we focus on fβ minimal polynomial
of β over Q, norm and trace can be written in terms of β and its conjugate:

fβ(x) = x2 + (β + β)x + (β ⋅ β)

= x2 + trace(β)x +norm(β)

Taking β = φ as an element of Q(φ) = Q(
√

5), then norm(φ) = −1 and
trace(φ) = 1. With φ in canonical form,

norm(φ) = P +
√

D
Q

⋅ P −
√

D
Q

= P2 − 5
Q2

trace(φ) = P +
√

D
Q

+ P −
√

D
Q

= 2P
Q

Consider now Qp.
We wish to extend the theory of real quadratic irrationals to p-adic quadratic
irrationals, and understand whether (and when) they are ill-defined.
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Definition 3.24 An α in Qp is quadratic irrational (or p-adic quadratic
irrational) if [Q(α) ∶ Q] = 2 as a field extension.

Most properties transfer, allowing us to define norm and trace in Q(α).

Lemma 3.25 If α is a p-adic quadratic irrational, then it is root of an irreducible
degree-two polynomial of coefficients in Z.

Proof. Since [Q(α) ∶ Q] = 2, we can consider Q(α) as a Q-vector space isomor-
phic to Q⊕Q with power base {1, α}. The set {1, α, α2} is linearly dependent,
so there are c0, c1, c2 ∈ Q such that c0(1) + c1(α) + c2(α2) = 0. This means that
α is root of f (x) = c2x2 + c1x + c0 whose coefficients can be assumed integers
without loss of generality. The polynomial is irreducible, otherwise it would
split in linear factors and [Q(α) ∶ Q] = 1.

A p-adic quadratic irrational α is therefore associated to an irreducible quadratic
polynomial f (x) = a2x2 + a1x + a0 such that f (α) = 0 and the ai are in Z. We
know that α is one among

x1, x2 =
−a1 ±

√
a2

1 − 4a0a2

2a2

allowing us to find explicit expressions for conjugate, norm and trace.
Conversely, an irreducible quadratic polynomial of determinant D = a2

1 −4a0a2
over Z can be associated to a p-adic quadratic irrational, but we must require
that

√
D is defined in Qp. From Section 1.10, this is equivalent to D being a

square modulo p. We shall always assume this is the case.

An analogue of Lemma 2.29 conveniently holds, allowing to write quadratic
irrationals in a canonical form. This is a direct consequence of Lemma 3.25.

Corollary 3.26 Any α is a p-adic quadratic irrational if and only if it can be
expressed as

α = P +
√

D
Q

satisfying the properties

(i) P is an integer

(ii) D is a positive integer

(iii) D is a square in Qp, but not a perfect square

(iv) Q is a non-zero integer dividing P2 −D

This is unique if D is squarefree: in such case, an α is in canonical form.

Proof. If α is a p-adic quadratic irrational, i.e. if [Q(α) ∶ Q] = 2, then consider-
ing its minimal polynomial f (x) = a2x2 + a1x + a0

α =
−a1 +

√
a2

1 − 4a0a2

2a2

Therefore (i) and (ii) are trivial, the first and second part of (iii) are required
respectively for it to exist and the extension to have degree two, and (iv) can
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be assumed without loss of generality. Of course all calculations have to be
immersed in Qp.
On the other hand, an α satisfying all (i), (ii), (iii) and (iv) has a well-defined
conjugate α in Qp such that

f (x) = x2 + (α + α)x + (α ⋅ α)

is quadratic and irreducible, otherwise we would have

∆ = (α + α)2 − 4(α ⋅ α)

= (2P
Q
)

2

− 4(P2 −D
Q2 ) = 4D

Q2 = 0

but this cannot be if D satisfies (iii).

We can always assume a quadratic irrational α in such form. The only nui-
sance is defining which of the two roots we need to consider according to the
representative set of Z/pZ (recall S in Notation 3.1).
If D is a positive integer with (D

p) = 1, Hensel’s lemma (Theorem 1.46) pro-
vides an algorithm to find its two roots d1 and d2 as zeroes of x2 −D, and tells
us they are p-adic integers. Write

d1 = a0 + a1 p + a2 p2 + a3 p3 + a4 p4 + . . .

d2 = b0 + b1 p + b2 p2 + b3 p3 + b4 p4 + . . .

If we fix {0, 1, . . . , p − 1}, then we choose the smallest between a0 and b0 and
pick the corresponding dj. If we fix {−(p − 1)/2, . . . ,+(p − 1)/2} instead, we choose
the positive one. Since a0 and b0 are roots of D modulo p, only one is positive.
This dj is the canonical root of D, and we write

√
D = dj.

Consider the example from Section 1.10. We provided two solutions of

f (x) = x2 − 2 ∈Z7[x]

as p-coherent sequences. This is equivalent to finding
√

2 in Z7. As p-adic
numbers, they are (in the two representation systems)

d1 = 3+ 1p + 2p2 + 6p3 + ⋅ ⋅ ⋅ = +3+ 1p + 2p2 − 1p3 + . . .

d2 = 4+ 5p + 4p2 + 0p3 + ⋅ ⋅ ⋅ = −3− 1p − 2p2 + 1p3 + . . .

Under the representative set {0, 1, . . . , p − 1}, the leftmost expansion, we pick
d1. Under {−(p − 1)/2, . . . ,+(p − 1)/2}, we pick d1 again. Here

√
2 = d1 in all cases.

A final remark and warning.
Both real and p-adic quadratic irrationals are roots of an irreducible quadratic
polynomial with integral coefficients, but it is important to recall that we work
in Qp and there is no “nice” correspondence between it and R.
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Aperiodic p-adic series are divergent real series1 , and some real numbers2

do not exist at all in Qp. One should think of them as vastly different struc-
tures. An exception is Q, which is contained in both: its two copies can be
identified one to the other.

3.7 P2, periodicity property
A preliminary analysis and comparison with R.

We unknowingly worked with field extensions while proving Euler’s and La-
grange’s theorems (Theorems 2.33 and 2.34) in R. Periodicity property P2 for
a generic continued fraction algorithm cfrac on Qp can be rephrased as

(P2’) The output (bi)I ← cfrac(α) is periodic if and only if [Q(α) ∶ Q] = 2.

Again, this is reasonable since both R and Qp contain a copy of Q. Euler’s
proof only uses universal arguments, therefore his side also holds in Qp.

Theorem 3.27 (Euler in Qp) If a p-adic number α has an eventually periodic
continued fraction expansion, then α is a p-adic quadratic irrational.

Sketch of proof. Exactly like we did for Theorem 2.33.
If cfrac satisfies (P0), consider its partial numerators and denominators. As-
sume α has a purely periodic expansion, then we can represent it as a quadratic
irrational via some partial quotient αj. If α has an (eventually) periodic expan-
sion, it is the image of a quadratic irrational via a linear fractional operator
and thus a quadratic irrational itself.

This suggests a natural correlation between periodic continued fractions and
degree-two equations. Studying property (P2’), Theorem 3.27 leaves us with
the following problem to address.

Problem 6 (Periodicity problem) Fix a p-adic number α such that
[Q(α) ∶ Q] = 2 and a continued fraction algorithm on Qp. Does α have a
periodic continued fraction expansion?

In R, Lagrange’s algorithm provided a closed form for complete quotients αn.
We can give a similar structure to Qp. Writing α = α0 in canonical form, we
can define two sequences (Qn)I and (Pn)I such that

αn =
Pn +
√

D
Qn

If the partial quotients returned from the algorithm are (bi)I , these two se-
quences can be recursively defined as

⎧⎪⎪⎨⎪⎪⎩

P0 = P
Pn+1 = bnQn − Pn

⎧⎪⎪⎨⎪⎪⎩

Q0 = Q

Qn+1 =
D−P2

n+1
Qn

1Formally evaluate the formal power series: this usually diverges in R. Theorem 1.44 states
that rationals are exactly those elements in Qp with periodic (formal) series expansion upon
allowing an infinite series of zeroes to be “periodic” - otherwise integers would not be periodic.

2Consider the square root of 5 in Q3, 5 is not a square modulo 3 since 2 ≡ 5 mod 3.
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Lemma 3.28 If α is a quadratic irrational, then every complete quotient αn can
be written as

αn =
Pn +
√

D
Qn

with Pn and Qn satisfying the recurrence relation above.

Proof. We proceed by induction. For n = 0 we have α0 = α already in such
form, and from α we inherit P0 and Q0. For the inductive step,

αn+1 =
1

αn − bn
= 1

( Pn+
√

D
Qn
)− bn

= Qn

(Pn − bnQn)+
√

D
= Qn(Pn − bnQn −

√
D)

(Pn − bnQn)2 −D

= Qn(−Pn+1 −
√

D)
P2

n+1 −D
= Qn(Pn+1 +

√
D)

D − P2
n+1

= Pn+1 +
√

D
Qn+1

where in the last row we simply substituted the recurrence relations.

A first difference from real continued fraction is that the partial quotients in
R are integers, while in Qp they are rationals3. We cannot say a priori if this
form is canonical since Pn and Qn could be rationals, but due to Corollary 3.26
it can indeed be reduced to a canonical form. See the analysis in Capuano,
Veneziano and Zannier [9, Section 4] for more results.

The conjugate of αn satisfies a similar formula, just with the opposite sign
on the square root. This is easy to prove, apply the usual σ ∈ G(Q(α)/Q) such
that σ(

√
D) = −

√
D to αn.

Remark that for general continued fractions the following formulas hold:

αn+1 =
an

αn − bn

⎧⎪⎪⎨⎪⎪⎩

P0 = P
Pn+1 = bnQn − Pn

⎧⎪⎪⎨⎪⎪⎩

Q0 = Q

Qn+1 =
D−P2

n+1
anQn

where we already inherit the assumption an ≠ 0 from the definition.

Sadly, knowing the recurrence relations is not enough to prove (P2’) in the
general case. A crucial step in the proof of Lagrange’s side in R was having
positive partial quotients, which we are not always guaranteed to have.

3.8 Schneider’s p-adic algorithm
A brief overview on the algorithm and its properties.

3Being a finite formal series in p, they are rationals.
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In 1969, Schneider provided the first continued fraction algorithm for p-adic
integers. Its structure does not follow Lagrange’s algorithm and returns a
generalised continued fraction.
This section is a short overview mainly based on de Poorten [42] and Romeo
[36]: while not too relevant for our case, this algorithm is worthwhile to study
due to it being the first. The results are simple enough to show in a few pages.

Schneider fixed {0, 1, . . . , p − 1} as representative set for Z/pZ and considered
the following result.

Lemma 3.29 All a ∈Zp satisfying 0 ≤ ∣α − a∣p < 1 are congruent modulo p.

Proof. Consider two distinct a1, a2 such that 0 ≤ ∣α − ai∣p < 1, then

∣a1 − a2∣p = ∣a1 + α − α − a2∣p
≤max{∣a1 − α∣p, ∣α − a2∣p} < 1

since Qp is ultrametric. This implies νp(a1 − a2) > 0.

Remark that the condition is equivalent to

νp(α − a) > 0

We denote by [β](j) the j-th coefficient in the expansion of the p-adic integer
β for convenience. The lemma states the following: if given any α ∈Zp we are
able to find an a ∈ Zp such that νp(α − a) > 0, then they are congruent modulo
p. But we could have α ≠ a, i.e. some j such that [α − a](j) ≠ 0. We need to
pick such index j and repeat the process, mimicking the inherent inverse limit
structure of Zp given by the ring isomorphism from Theorem 1.14,

φ ∶Zp Ð→
+∞
∏
n=0

Z/pn
Z

+∞
∑
i=0

ai p
i z→ (α0, α1, α2, . . . )

Algorithm 3.30 (Schneider’s Continued Fraction expansion for Zp)
Fix α = ∑i ci pi ∈Zp for ci ∈ {0, 1, . . . , p − 1}. Set α0 = α and b0 = [α0](0),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

en+1 = νp(αn − bn)
an+1 = pen+1

αn+1 = an+1
αn−bn

bn+1 = [pen+1 αn+1](0)

If at any step αi = bi, the algorithm terminates and I is finite.

This returns a continued fraction expansion in general form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .
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such that the bi take by construction value in {1, 2, . . . , p − 1} and the ai are
positive powers of p. The only exception is b0 which can be zero: remark that

νp (pen+1 αn+1) = en+1 + νp (αn+1) = en+1 + νp (an+1)− νp (αn − bn)
= en+1 + en+1 − en+1 = en+1

Theorem 3.31 Schneider’s algorithm satisfies property (P0).

Proof. This is trivial if the continued fraction is finite. For an infinite expres-
sion, consider the generalised formula

(An An−1
Bn Bn−1

) = (b0 1
1 0)(

1 0
0 a1

)(b1 1
1 0) ⋯ (

1 0
0 an

)(bn 1
1 0)

Taking its determinant, we showed that

AnBn−1 − Bn An−1 = (−1)n+1a1⋯an

An

Bn
= An−1

Bn−1
+ (−1)n+1a1⋯an

BnBn−1

where the ai are positive powers of p. As n → +∞, we have that

∣An

Bn
− An−1

Bn−1
∣
p
= ∣(−1)n+1 pe1+⋅⋅⋅+en

BnBn−1
∣
p

= ∣
pe1+⋅⋅⋅+en

BnBn−1
∣
p
Ð→ 0

We can also use these equations to find an expression for the limit,

Cn =
An

Bn
= [b0]+ [

pe1

B0B1
]+ [−

pe1+e2

B1B2
]+ ⋅ ⋅ ⋅ + [(−1)n+1 pe1+⋅⋅⋅+en

BnBn−1
]

which again converges in p-adic norm.

Sadly, Schneider’s algorithm does not satisfy property (P1). We can find vari-
ous counterexamples: for example 71/17 in Q3 returns

⎡⎢⎢⎢⎣
27
1

3
1

3
1

3
1

3
1

3
1

3
2

⎤⎥⎥⎥⎦

where

(ai)I∗ = (27, 3)
(bi)I = (1, 1, 1, 1, 1, 1, 2)

We are given the following effective criterion for the determination of its pe-
riod by Pejkovic [29].

Theorem 3.32 Schneider’s algorithm on a reduced rational α = a/b either
terminates or we can detect a period within O(log2 H(α)) steps, where the
rational height is H(α) =max{∣a∣, ∣b∣}.
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In our example, H(α) = 71 and log(71) = 6.149 . . .

Schneider’s algorithm doesn’t satisfy property (P1) either. One of the first
criteria was given by de Weger [43] starting from a challenge by Bundschuh
[7] to showh whether

√
−1 ∈ Q5 ,

√
2 ∈ Q7 ,

√
5 ∈ Q11 ,

√
3 ∈ Q13

were periodic. Remark that we already used challenge 2 in some examples.

Theorem 3.33 If for some index n the sign of Pn and Qn are different and
P2

n+1 > D, then the (Schneider) continued fraction of
√

D ∈ Qp is not periodic.

Proof. Consider the recurrence formulas for (Pn)I and (Qn)I in the general
case. It follows immediately that Pn+1 = anQn − Pn has a different sign from
Pn and the same of Qn. This also holds for Qn and Qn+1 = (D − P2

n+1)/(anQn),
which have different signs, therefore Pn+1 and Qn+1 also have different sign.
Moreover,

∣Pn+2∣∞ = ∣Pn+1∣∞ + bn+1∣Qn+1∣∞ > ∣Pn+1∣∞
implying P2

n+2 > D. By induction, ∣Pn+1∣∞ tends to infinity, but periodicity of
the continued fraction (in Qp) implies periodicity of the Pn (in both Qp and
R), which cannot be if they are unbounded.

Corollary 3.34 If D < 0, the continued fraction of
√

D is not periodic in Qp.

Proof. If c < 0, we immediately satisfy the conditions of the Theorem: P2
n > D

always holds and P1 = b0 > 0, Q1 = (D − P2
1 )/a0 < 0 by definition.

De Weger proved that the challenges by Bundschuh are not periodic: the first
satisfies the Corollary, and the others all satisfy the Theorem with n = 1. For
example

√
2 ∈ Q7 goes through the following iterations (also from de Weger

[43], albeit with a different notation):

n Pn Qn an bn
0 0 1 49 3
1 2 −1 7 1
2 −3 2 49 3

Table 3.2: Sequences associated to
√

2 ∈ Q7 [43, page 114].

Starting from n = 1, the hypotheses of Theorem 3.32 are satisfied.

3.9 Ruban’s p-adic algorithm
A brief overview on the algorithm and its properties.

Since the article by Ruban can only be found in Russian, we will need to base
this Section on references by Browkin [5, 6], Murru [26], Romeo [36].

Consider Lagrange’s algorithm. Its structure, apart from the “integer part”
(or floor) operation, is universal. Ruban made an attempt to the definition of
a p-adic floor function.
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Definition 3.35 (Ruban’s r function) Fix α = ∑i ai pi ∈Zp for ai in {0, 1, . . . , p − 1}.
Ruban’s r function is

r ∶ Qp Ð→ Q

α =
+∞
∑

i=−k
ai p

i z→ r(α) =
0
∑

i=−k
ai p

i

Once this is fixed, the algorithm follows the same structure. Ruban’s algo-
rithm is worth studying for its close similarity with Browkin I, which has
many open problems to offer.

Algorithm 3.36 (Ruban’s Continued Fraction expansion for Qp) Set
α0 = α and b0 = r(α0). Iteratively define

⎧⎪⎪⎨⎪⎪⎩

αi+1 = 1
αi−bi

bi+1 = r(αi+1)

If at any step αi = bi, αi+1 is undefined and the two sequences (bi)I ,
(αi)I terminate (i.e. I is finite).

Remark that Ruban’s floor function r maps a p-adic number into a rational
number of negative p-adic valuation, except eventually the first whenever b0 =
0. This allows us to prove the following.

Lemma 3.37 Ruban’s continued fraction algorithm satisfies property (P0).

Proof. Corollary 3.22 holds for n ≥ N with starting index N = 1 since all
b1, b2, b3, . . . have negative valuation.

Laohakosol [18] proved that Ruban does not satisfy property P1.

Theorem 3.38 (Theorem 2 [18]) Let α be a nonzero element of pZp. Then α
is rational if and only if its Ruban expansion is either finite or periodic with all
partial quotients of form bi = p − 1/p from a certain index i onwards.

Sketch of proof. If the expansion is finite, this is trivial. If the partial quotients
are bi = p − 1/p from i ≥ N, N fixed, Laohakosol provides a rational expression
for the periodical segment. The other side requires building an associated
generalised continued fraction [0, a1 ∶ b1, a2 ∶ b2, . . . ] and proving the two are
“equivalent” - in the sense that they have the same convergents. Then Lao-
hakosol introduces some auxiliary xi such that

α =
a1

x0/x1

=
a1

b1 + a2x2/x1

=
a1

b1 +
a2

b3 + a3x3/x2

= . . .

and proves they are eventually constant in absolute value. The catch is that
they are either non-zero or the fraction terminates.

A recent result by Capuano, Veneziano and Zannier [9] provides a characteri-
sation from the point of view of the prime p.
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Theorem 3.39 For any α in Q ⊂ Qp,

(i) if α < 0, for every prime p Ruban’s algorithm does not terminate for α.

(ii) if α ≥ 0 and α ∈Z, there are only finitely many primes p such that Ruban’s
algorithm does not terminate for α.

(iii) if α ≥ 0 and α /∈Z, there are only finitely many primes p such that Ruban’s
algorithm terminates for α.

The proof is very convoluted and exploits results we did not introduce (e.g.
real embeddings). See the article for more details.

We also know that Ruban’s algorithm does not satisfy (P2). Ooto [28] exploits
arguments similar to those of de Weger.

Theorem 3.40 If for some n we have PnQn ≤ 0 and P2
n+1 > D, then Ruban’s

algorithm is not ultimately periodic for α.

Proof. Assume PnQn < 0. Since the bn are always positive,

PnPn+1 = Pn(bnQn − Pn) = PnbnQn − P2
n < 0

and by hypothesis

QnQn+1 = Qn (
D − P2

n+1
Qn

) = D − P2
n+1 < 0

therefore Pn+1Qn+1 < 0. Similarly to Theorem 3.32,

∣Pn+2∣∞ = ∣bn+1∣∞∣Qn+1∣∞ + ∣Pn+1∣∞ > ∣Pn+1∣∞

which diverges, making it impossible for (Pn)I to be periodic.

This allows for the creation of an arbitrary number of counterexamples to (P2)
for Ruban’s continued fractions. The analogy with de Weger’s approach ends
with the following:

Corollary 3.41 If D < 0, Ruban’s algorithm is not ultimately periodic on
√

D.

Proof. Here P0Q0 = 0 and P2
1 = 1, so we can apply the Theorem for n = 0.

Interestingly, in the same article by Capuano, Veneziano and Zannier [9] men-
tioned above, they also provide an effective criterion for the determination of
the period.

Proposition 3.42 Let α be a p-adic quadratic irrational. Ruban’s continued
fraction of α is periodic if and only if there exists an unique real embedding
j ∶ Q(α)→ R such that the image of each αn under j is positive.
There exists an effectively computable constant Nα such that either

(i) an n ≤ Nα does not have a positive real embedding, therefore the expan-
sion is not periodic, or

(ii) αn1 = αn2 for some n1 < n2 ≤ Nα, therefore the expansion is periodic.
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3.10 A p-adic Euclidean algorithm
On a generalisation of the Euclidean algorithm to Qp.

J. Browkin [5] proposes what is perhaps the most natural definition of floor
function in Qp: we will introduce it from the perspective of Lager [17].

Theorem 3.43 (p-adic Euclidean division) Given any a, b ∈ Qp, b ≠ 0, there
exist two unique q ∈Z [1/p] with ∣q∣∞ < p/2 and r ∈ Qp with ∣r∣p < ∣b∣p such that

a = qb + r

Proof. Remark that q can also be seen as an element of R, so ∣q∣∞ is well-
defined. If ∣a∣p < ∣b∣p set q = 0 and r = a. Otherwise write

a = upνp(a) b = vpνp(b)

for u and v invertible according to Theorem 1.39. Find an integer q such that

q ≡ uv−1 mod pνp(b)−νp(a)+1

and ∣q∣ ≤ pνp(b)−νp(a)+1. This is possible because u and v are invertible in Zp,
hence νp(u) and νp(v) are zero and they are invertible in every Z/pkZ. If we
define q = qpνp(a)−νp(b) we get an element of Z [1/p] with ∣q∣∞ ≤ 1/p. Then

r = a − qb = upνp(a) − (qpνp(a)−νp(b)) vpνp(b) = (u − qv)pνp(b)

therefore νp(r) ≥ νp(b) + 1 and ∣r∣p < ∣b∣p. As for uniqueness, consider two
couples (r, q) and (r′, q′) satisfying the equation. Write q = m/pk and q′ = m′/pk.

b(q − q′) = (r′ − r)
∣b∣p∣q − q′∣p = ∣b(q − q′)∣p = ∣r′ − r∣p =max{∣r∣p, ∣r′∣p} < ∣b∣p

which implies ∣q − q′∣p < 1, so p ∣ q − q′ = m −m′/pk and pk+1 ∣ m − m′. But
∣q − q′∣∞ < p, so ∣m −m′∣p < pk+1. The only possibility is m −m′ = 0, so m = m′,
q = q′ and finally r = r′.

It is only natural to compare its properties to “usual” Euclidean division.

Theorem 3.44 (p-adic Euclidean algorithm) Consider two p-adic numbers a
and b with b ≠ 0. Set a0 = a and b0 = b. Iteratively find qi and ri according to
Theorem 3.43 such that

ai = qibi + ri

and for each step set ai = bi−1 and bi = ri−1. Stop when ri = 0.

(i) Assume a and b are rationals a = pa/qa pνp(a) and b = pb/qb pνp(b) in reduced
form. Then for each ri resulting from the algorithm

ri ⋅ lcm(qa, qb) ∈Z [1/p]

(ii) This process has a finite number of steps for rational inputs.
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Proof. Consider (i). Fix l = lcm(qa, qb). From a0 = q0b0 + r0, we get

l
pa

qa
pνp(a) = lq0

pb

qb
pνp(b) + lr0

and lr0 lies in Z [1/p]. The result for all the ri follows by induction with the
same reasoning.

Consider (ii) instead. For any couple (ai, bi) with bi ≠ 0 write them as

ri = ui p
νp(ri) = ui p

ϵi qi = vi p
νp(qi) = vi p

δi

according to Theorem 1.39. Some remarks on them:

(a) In Theorem 3.43 we set q = qpνp(a)−νp(b) with νp(a) ≤ νp(b). If q ≠ 0,
then p does not divide it and ∣q∣p ≥ 1. In our setting we have νp(qi) =
νp(ai)− νp(bi) = νp(ri−2)− νp(ri−1), hence δi = ϵi−2 − ϵi−1.

(b) In the same proof we saw ϵi ≥ ϵi−1 + 1, therefore ϵi ≥ ϵi−1 + 1 ≥ ϵi−2 + 2
and ϵi > ϵi−2.

(c) We have that ∣vi pδi ∣∞ <
p−1

2 , hence ∣vi∣∞ <
p1−δi

2 .

(d) Both vi and ui are rationals.

Since ri = ai − qibi = ri−2 − qiri−1, we conclude that

ui p
ϵi = ui−2 pϵi−2 − (vi p

δi)(ui−1 pϵi−1)

= ui−2 pϵi−2 − viui−1 pϵi−1+δi

= pϵi−2(ui−2 − viui−1)

∣ui∣∞ ≤ pϵi−2−ϵi (∣ui−2∣∞ + ∣vi∣∞∣ui−1∣∞)

< pϵi−2−ϵi (∣ui−2∣∞ +
1
2

p1−δi ∣ui−1∣∞)

= pϵi−2−ϵi (∣ui−2∣∞ +
1
2

p1−ϵi−2+ϵi−1 ∣ui−1∣∞)

= pϵi−2−ϵi ∣ui−2∣∞ +
1
2

p1+ϵi−1−ϵi ∣ui−1∣∞

= pϵi−2−ϵi ∣ui−2∣∞ +
1
2

p1+ϵi−1−ϵi ∣ui−1∣∞

< 1
2
∣ui−2∣∞ +

1
2
∣ui−1∣∞

If we consider the sequence of elements si = ∣ui−1∣∞ + 2∣ui∣∞ ≥ 1, we get that

si = ∣ui−1∣∞ + 2∣ui∣∞
< ∣ui−1∣∞ + ∣ui−2∣∞ + ∣ui−1∣∞ = si−1

and the sequence (si) is decreasing. By property (i) we also know that if l is
the least common multiple of the reduced denominators of a and b then

l ⋅ si = l (∣ui−1∣∞ + 2∣ui∣∞) ∈Z

since the ui have unitary norm. So the sequence (l ⋅ si) is not only decreasing,
but of integers ≥ 1. It must terminate for rational inputs.
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We conclude showing how this algorithm ties to Browkin’s s.

Corollary 3.45 The quotient q resulting from the p-adic Euclidean division of
a and b in Qp is exactly s (a/b).

Proof. Browkin’s s applied on a p-adic number x outputs some s(x) such that

(i) s(x) lies in Z [1/p].
(ii) ∣x − s(x)∣p = ∣∑+∞i=1 ai pi∣p < 1 = ∣1∣p

(iii) ∣s(x)∣∞ <
p
2

For x = a/b we can write

a
b
= s ( a

b
)+ ( a

b
− s ( a

b
))

This would work for any choice of s (a/b), but we can exploit uniqueness of
the couple (q, r) from Theorem 3.43 to prove that q = s (a/b) and r/b = a/b− s (a/b).
By remarks (iii) and (i), ∣a/b∣∞ < p/2 and s (a/b) ∈ Z [1/p] respectively. Moreover
r = a − bs (a/b), so by remark (ii)

∣r∣p = ∣a − bs ( a
b
)∣

p
= ∣b∣p ∣

a
b
− s ( a

b
)∣

p
< ∣b∣p

By uniqueness in Theorem 3.43, q = s(a/b).

Consider for example Z3 with representatives {−1, 0,+1}, the division between

a = 2 = −1+ 1p

b = 26 = −1+ 0p + 0p2 + 1p3

returns a quotient q that can be calculated as

s ( a
b
) = s(

−1+ 1p
−1+ 1p3 ) = s (1+ 2p + 2p2 + 0p3 + 2p4 + . . . ) = 1

The result can be verified with formal division between a and b. The choice
of s by Browkin is justified a posteriori by this algorithm.

3.11 Continued fractions in local fields
On a general setting for a Lagrange analogue.

Before proceeding, it is relevant to remark that in his article Browkin [5] works
with a more general setting. In fact, the title we chose is that of [5]. We will
provide a small introduction so that the theory is well understood, and refer
to Ramakrishnan and Valenza [33], Artin [2], or the notes by Sutherland [41]
for more details.

This Section will show the reasoning behind most of the theory we need for
Browkin I and will become useful for a conjecture.
The overwhelmed reader can skip it and only consider Qp.
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Definition 3.46 A discrete valuation on a field K and group Γ is a map
ν ∶K→ Γ ∪ {∞} such that

(i) ν(xy) = ν(x)+ ν(y)
(ii) ν(x + y) ≥min [ν(x), ν(y)]
(iii) ν(x) =∞ if and only if x = 0

usually written in additive notation. If Γ = (Z,+) this is an integral valuation.
Written multiplicatively, ν yields an ultrametric absolute value ∣ ⋅ ∣ν on K.

Definition 3.47 A field K is called local field if it has a non-trivial absolute
value ∣ ⋅ ∣ and is locally compact under the topology induced by it.

From Gouvea [13], Qp is locally compact. The norm induced by the multi-
plicative formulation of νp is ∣ ⋅ ∣p, and the idea is that any open set is actually
clopen, so open neighbourhood of any α ∈ Qp are also closed.

Proposition 3.48 (Classification of local fields) Let K be a local field. If K is
archimedean, it is either C or R. If K is non archimedean, it is a finite extension
of Qp if it has characteristic zero or Fq((t)) for t trascendental over Fq if it has
prime characteristic. This holds up to isomorphism.

One can also provide more general results that further the link with Qp and
Zp. For example, every DVR R can be extended to a local field K = Quot(R).
Further, Hensel’s Lemma can be generalised to any complete DVR. However,
we are mainly interested in the following.

Lemma 3.49 The ring of integers Oν of a local field K is a DVR, moreover
Oν = {x ∈K with ∣x∣ ≤ 1}. The unique non-zero prime ideal mν of Oν as DVR is
mν = {x ∈K with ∣x∣ = 1}. Then Kν = K/Oν is the residue field of K under ν.

In order to define continued fractions in local fields, we need a final ingredient.

Definition 3.50 Consider a local field K closed under valuation ν.
Define ι the canonical homomorphism of additive groups ι ∶ K → K/mν. An
additional mapping s ∶K→K is K-compatible if

(i) s(0) = 0

(ii) ιs = ι

(iii) s(a) = s(b) if a − b ∈ mν

We denote by S the field generated by s(K).

Choosing an adequate K-compatible s will generalise the choice of a floor
function for Lagrange’s algorithm. Consider the following examples.

(A) The field K = F((x)) of formal power series over the field F is closed
under the norm induced by ν( f ) = ord( f ). Then Oν = Zp, mν contains
formal series of order 1 and the residue field is F. The mapping s can be
chosen as

s(
+∞
∑
n=r

anxn) =
0
∑
n=r

anxn

where an ∈ F. Then s(K) = F[x−1].
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(B) The field K = Q of rational numbers is not closed under the norm in-
duced by ν(r) = νp(r). We can still define Oν = Z [1/p], mν as the set of
elements of valuation 1, the residue field as Z.

(C) The field K = Qp of p-adic numbers is closed under the norm induced
by ν(α) = νp(α). Here Oν = Zp, mν is the set of elements of valuation 1
and the residue field is Z. The mapping s can be chosen as Browkin’s s
function

s(
+∞
∑
n=r

an pn) =
0
∑
n=r

an pn

where an ∈Z/pZ. Then s(K) =Z [1/p].
Browkin defines a general continued fraction algorithm for local fields as fol-
lows. Pick ζ ∈K, set ζ0 = ζ,

⎧⎪⎪⎨⎪⎪⎩

bn = s(ζn)
ζn+1 = 1

ζn−bn

stopping whenever ζn = bn. This returns two sequences (ζn)I and (bn)I upon
which we can define all structures related to continued fractions (for example
convergents Cn, or the An and Bn).

The algorithm depends on the choice of s, which is not canonical.

3.12 Browkin’s first p-adic algorithm
Construction and first properties of “Browkin I”.

The algorithm in Theorem 3.44 is only known to terminate for the set of repre-
sentatives {−(p − 1)/2, . . . , (p − 1)/2} of Zp. Browkin I assumes any p-adic integer
in such form. If p = 2, this set is ill-defined.
A natural approach is trying {0, 1} instead, but that degradates Browkin I
to Ruban’s algorithm, which lacks both properties (P1) and (P2). Moreover,
most proofs by Browkin would need to be adapted. It is usually implied that
Browkin continued fractions assume p odd.

Algorithm 3.51 (Browkin I) Consider a non-zero α ∈ Qp, fix α0 = α
and b0 = s(α0). Iteratively define the (bi)I and (αi)I as

⎧⎪⎪⎨⎪⎪⎩

αi+1 = 1
αi−bi

bi+1 = s(αi+1)

If at any step αi = bi, αi+1 is undefined and the two sequences (bi)I ,
(αi)I terminate (i.e. I is finite).

Let us start with a complete example. For p = 3, Browkin I requires {−1, 0,+1}
as set of representatives. With a = −1+ p and b = −1+ p3, define α = a/b in Q3.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α0 = a/b = 1+ 2p + 2p2 + 0p3 + 2p4 + . . .
α0 = 1− 1p + 0p2 + 1p3 − 1p4 + . . .
b0 = 1
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α1 = 1
α0−b0

= 2p−1 + 2+ 1p + 0p2 + 2p3 + 0p4 + . . .

α1 = −1p−1 − p + 1p2 − 1p3 + 1p4 + . . .
b0 = −1p−1 = − 1

3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α2 = 1
α1−b1

= 2p−1 + 1+ 2p + 2p2 + 2p3 + 2p4 + . . .

α2 = −1p−1 − 1+ 0p2 − 0p3 + 0p4 + ⋅ ⋅ ⋅ = − 4
3

b0 = −1p−1 − 1 = − 4
3

and the algorithm terminates. This is good news: α is rational in Q3 and
we desire to achieve finiteness property (P1). The continued fraction is in
canonical form

α = 1+
1

−1/3+
1
−4/3

This converges both in Q3 and in R, it suffices to backtrack the calculations:

α = 1+
1

−1/3+
1
−4/3

= 1+
1

−1/3− 3/4
= 1− 12

13
= 1

13
= a

b

This is meaningful since we are in the copy of Q contained in both R and Q3.
Of course, one can check that α = 2/26 has the same Browkin I expansion as the
reduced α = 1/13, given by4

(bi)I = (1,−1/3,−4/3)
(αi)I = (2/26,−13/12,−4/3)

greatly differing from the real case, where the expansion is [0, 13], clearly
representing 1/13. Back to Q3, the convergents are

C0 = [b0] = 1

C1 = [b0, b1] = b0 +
1
b1
= b0b1 + 1

b1
= −2

C2 = [b0, b1, b2] = b0 +
1

b1 + 1
b2

= 2
26
= a

b

equivalently defined by the sequences

(Ai)I = (1, 2/3, 1/9)
(Bi)I = (1,−1/3, 13/9)

We can provide some nice results on the valuation of the two sequences (αn)I
and (bn)I . Consider the following, which will become relevant later.

Lemma 3.52 For n ≥ 1, νp(αn) = νp(bn). If b0 ≠ 0, this holds for all n.
4It is not hard to write α2 = −13/12 exploiting the proof of Theorem 1.44: period and pre-period

are respectively k = 2 and j = 3, so the equation becomes (2p−1 +2+ p)+ p3 2
1−p2 = 17/3− 27/4 = −13/12.
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Proof. Remark that

νp (b0) = νp (s(α0)) = {
νp(α0) if νp(α0) ≤ 0

νp(0) else

Of course νp(β− s(β)) > 0 for any β, therefore νp(αn) = −νp(αn − s(αn)) < 0 and

νp (bn) = νp (s(αn)) = νp (αn + s(αn)− αn)
=min [νp (αn) , νp (s(αn)− αn)] = νp (αn)

Remark that all partial quotients bi (except sometimes the first) always have
negative valuation, so previous results from Section 3.2 on the two sequences
(Ai)I , (Bi)I still hold.

Corollary 3.53 Browkin I satisfies property (P0).

Proof. Corollary 3.22 holds for n ≥ N with starting index N = 1 since all
b1, b2, b3, . . . lie in Z [1/p] and have negative valuation.

Having partial quotients in Z [1/p] is a crucial property for convergence. While
not a necessary condition, we possess a great deal of theorems that make it
desirable. This adds some constraints to the floor function we can use.

Proposition 3.54 (Unicity) Assume that two sequences (bi)I and (b′i)I satisfy

(i) the terms lie in s(Qp) =Z[1/p]
(ii) they have strictly negative valuation, except eventually the first term

If they are element-wise different, then their limits β, β′ are different.

Proof. Assume that they only differ in the first element. By Convergence The-
orem I 3.13, νp(β− b0) > 0 and νp(β′ − b′0) > 0 for two well-defined limits β and
β′. In particular b0 ≠ β, b′0 ≠ β′. If β = β′, b0 and b′0 are congruent modulo p
and therefore b0 = b′0, which is absurd.

The following proves that Browkin I is an ideal candidate for the generalisa-
tion of real condinued fractions. Schneider’s and Ruban’s algorithms algo-
rithms, satisfies finiteness property (P1) and is an ideal candidate for further
study into periodicity property (P2).

Theorem 3.55 Browkin I satisfies property (P1).

Proof. Consider α ∈ Q ⊂ Qp. In Browkin I, the n-th step is defined if and only
if s(αn) ≠ αn. Consider the sequences (bi)i and αi)i and remark that

αn+1 = (αn − bn)−1

αn = bn + α−1
n+1

where bn ∈ Z[1/p]∩ (−p/2, p/2). We can factor out the power of p at the denomi-
nator and write bn = cn p−k such that

(i) ∣cn∣ ≤ 1
2 pk+1

(ii) cn ∈Z
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(iii) k = −νp(bn) = −νp(αn) > 0

We can also write αn = γn/pk βn with γn, βn such that

(iv) the fraction is reduced, i.e. gcd(γn, βn) = 1

(v) γn, βn ∈Z

(vi) p ∤ γn and p ∤ βn

Similarly, αn+1 = γn+1/pm βn+1 where γn+1 and βn+1 still satisfy (iv), (v), (vi) and
m ≥ 1. Combining all these we get that

αn+1 = (αn − bn)−1 = pkβn(γn − cnβn)−1

= γn+1

pmβn+1

γn+1(γn − cnβn) = pk+mβnβn+1

Due to (iv) and (vi), necessarily γn+1 = ±βn and βn+1 = ±p−k−m(γn − cnβn). We
can provide some bounds on their dimension,

∣βn+1∣ ≤ p−k−m (∣γn∣+
1
2

pk+1∣βn∣) <
1
2
∣γn∣+

1
2
∣βn∣

∣γn+1∣+ 2∣βn+1∣ < ∣βn∣+ (∣γn∣+ ∣βn∣) = ∣γn∣+ 2∣βn∣

We know from (v) that the sequence (∣γn∣+ 2∣βn∣)n is of natural numbers. It is
decreasing and therefore finite.

An interesting remark is that Lager [17] stated they were strongly motivated
in their work on a p-adic Euclidean algorithm by Browkin’s proof. In fact, the
two are based on the same calculations and idea.

Browkin I is in a strong position for property (P2). Remark that the simplest
quadratic irrationals have form

√
D, and both Schneider and Ruban failed on

some simple quadratic irrationals (Theorems 3.33 and 3.40). Their study is
still open for Browkin I, but Browkin [5] manages to prove a positive result in
the case of a finite local field (see the previuos Section for an introduction).

Maintaining the naming conventions we had before, consider the local field
K with valuation ν on it and the field S closure of s(K). Pick an element D
in S such that

√
D ∈ K and is irrational over S, i.e. (S(

√
D) ∶ S) = 2. Consider

the algorithm Browkin I in this local setting. We will need some preliminary
lemmas.

Lemma 3.56 For α =
√

D irrational in K, νp(αn+1) = −νp(αn) (n = 0, 1, 2, . . . ).

Proof. Suppose νp(
√

D) ≤ 0. By construction, b0 = α0 − α−1
1 and

α1 =
1

α0 − b0
= 1

α0 − α0 − α−1
1
= 1
−2α0 − α−1

1
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and since ν (α−1
1 ) = ν (b0 − α0) > 0 we get

ν (α1) = ν( 1
−2α0 − α−1

1
) = −ν (−2α0 − α−1

1 )

= −min [ν (−2α0) , ν (−α−1
1 )] = −ν (α0)

where ν(2) = 0 (in Qp this would be the requirement p ≠ 2), and

ν (α2) = ν( 1
−2α1 − α−1

2
) = −ν (−2α1 − α−1

2 )

= −min [ν (−2α1) , ν (−α−1
2 )] = −ν (α1)

Assume ν(
√

D) > 0 instead, then b0 = s(α) = 0, α1 = α−1
0 and α1 = −α−1

0 . Since
b1 = α1 − α1

2, where ν (α−1
2 ) = ν (b1 − α1) > 0, we get as before

α2 =
1

α1 − b1
= 1

α1 − α1 − α−1
2
= 1
−2α1 − α−1

2

ν (α2) = ν( 1
−2α1 − α−1

2
) = −ν (α1)

This proves n = 1 and n = 2. For the inductive step, regardless of ν(
√

D),

ν (αn+1) = ν ( 1
αn − bn

) = −ν (αn − bn)

= −min [ν (αn) , ν (bn)]
= −min [−ν (αn−1) , ν (αn)] = −ν (αn)

In Qp we know how to write αn and αn in canonical form. This still holds in
the generic local field, and the two sequences (Pn)I and (Qn)I defining them
satisfy the following recursion laws:

⎧⎪⎪⎨⎪⎪⎩

P0 = 0
Pn+1 = bnQn − Pn

⎧⎪⎪⎨⎪⎪⎩

Q0 = 1

Qn+1 =
D−P2

n+1
Qn

Lemma 3.57 For n ≥ 2,

(i) ν(Pn) = ν(Qbbn) = ν(
√

D)
(ii) ν(Pn −

√
D) = ν(

√
D)− ν(bnbn+1)

Proof. Since ν(αn) = −ν(αn) > 0 for n ≥ 2,

ν(2Pn

Qn
) = ν (αn + αn) =min [ν (αn) , ν (αn)] = ν(bn)

ν(2
√

D
Qn
) = ν (αn − αn) =min [ν (αn) , ν (αn)] = ν(bn)
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which immediately proves (i). For the second part,

ν(Pn +
√

D
Qn

) = −ν(αn) = −ν(αn−1) = −ν(bn−1)

ν(Pn +
√

D)− ν(Qn) = −ν(bn−1)

ν(Pn +
√

D) = ν(Qn)− ν(bn−1)+ ν(bn)− ν(bn)

ν(Pn +
√

D) = ν(bnQn)− ν(bnbn−1) = ν(
√

D)− ν(bnbn−1)

In this general setting, Browkin [5] provides a positive result.

Theorem 3.58 If K(x) is the field of power series over a finite field K, then
every element

√
D ∈ K ∖ S such that D ∈ s(K(x)) has a periodic continued

fraction expansion.

Proof. Here quadratic irrationals are those α such that (S(α) ∶ S) = 2. We can
associate to α two sequences Pn and Qn defined with the same recursion. Since
s(K(x)) = K[x−1] and S = K(x), Pn and Qn can still be described as before,
and D ∈ s(K(x)) implies Pn, Qn ∈ s(K(x)) since s(K(x)) is a ring. Moreover
Pn, Qn ∈ K[x−1], so they are polynomials in x−1. They have the same degree
due to Lemma , since in our setting ν assigns to each element its index as
formal power series. If K is finite, they can only assume a finite number of
values and so do the couples (Pn, Qn).

It is clear how Browkin uses the idea behind Lagrange’s theorem. However,
this result still remains undecided in Qp since the last step does not hold and
the number of values the couple (Pn, Qn) can assume is unbounded.

3.13 Browkin’s second p-adic algorithm
A brief overview on the algorithm and its properties.

We conclude with Browkin II [6], a further development born from the need
to have (empirically) more periodic expansions than Browkin I5. The latter is
the algorithm of our interest, so this Section will only be a short overview
based on remarks on Browkin [6] and Romeo [36].

Consider Browkin’s t function,

t ∶ Qp Ð→ Q

α =
+∞
∑

i=−k
ai p

i z→ t(α) =
−1
∑

i=−k
ai p

i

Like what we did for Browkin’s s, the fact that its image is contained in Z [1/p]
will be crucial for convergence.

Lemma 3.59 For all α in Qp, t(α) lies in Z [1/p].
5This does not mean that Browkin I does not return periodic expansions, but that the period

has not been observed yet. The pre-period is also an unknown, making this harder to approach.
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Algorithm 3.60 (Browkin II) Set α0 = α and b0 = a0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

bn = s(αn) if n even
bn = t(αn) if n odd and νp(αn − t(αn)) = 0
bn = t(αn)− sign(t(αn)) if n odd and νp(αn − t(αn)) ≠ 0
αn+1 = 1

αn−bn

The structure of the algorithm is slightly more complex. As we mentioned
above, the properties of t are crucial for convergence. Browkin [6] proves the
following relaxation of the requirements from Corollaries 3.22 and 3.23.

Lemma 3.61 Consider (bn)n sequence of elements in Z [1/p] such that νp(bn)
is zero whenever n is even and negative whenever n is odd. Then the sequence
converges in Qp.

Proof. First, we prove that Bn ≠ 0 and νp(Bn) ≤ νp(Bn−1), where the equality
holds if and only if n is even. We know that B0 = 1 and B1 = b1, then B1 ≠ 0
due to its valuation. It also follows that

νp(B0) = 0 > νp(b1) = νp(B1)

For the inductive step, we have the hypothesis

Bn−1 ≠ 0 and νp(Bn−1) ≤ νp(Bn−2) for some n ≥ 2

where the equality holds if and only if n is odd. In both cases

νp(bnBn−1) = νp(Bn−1) < νp(Bn−2) if n even

νp(bnBn−1) < νp(Bn−1) = νp(Bn−2) if n odd

therefore

νp(Bn) = νp(bnBn−1 + Bn−2)
=min [νp(bnBn−1), νp(Bn−2)]

= νp(bnBn−1)
⎧⎪⎪⎨⎪⎪⎩

= νp(Bn−1) < 0 for n even
< νp(Bn−1) < 0 for n odd

meaning again that Bn ≠ 0 and the claim follows.
Having proved that, we also have that the limit of the sequence (B−1

n )I is zero
since −νp(Bn) diverges to +∞. The sequence of convergents (Cn)I is Cauchy,

Cn −Cn−1 =
An

Bn
− An−1

Bn−1
= (−1)n

BnBn−1
→ 0

Corollary 3.62 Browkin II satisfies property (P0).

Proof. Recall that due to Lemma 3.19 the partial quotients (bi)I from Browkin
II satisfy these requirements.

Browkin conjectured that this algorithm also satisfied (P1), but the problem
was left open in [6] and recently proved by Barbero, Cerruti and Murru [4].
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Theorem 3.63 Browkin II satisfies property (P1).

Sketch of proof. The proof is similar to that of Browkin I, but adapted to the
use of the functions t and sign. The goal is again to reach a bound of the kind

2∣Bn+1∣∞ < ∣An∣∞ + ∣Bn∣∞

From here we shorten ∣ ⋅ ∣∞ to ∣ ⋅ ∣. Recall that due to Lemma 3.19 the partial
quotients (bi)I from Browkin II have null valuation if i is even and negative
valuation if i is odd. Moreover, a result analogue to Lemma 3.52 holds. Re-
mark that

νp (b0) = νp (s(α0)) = {
νp(α0) if νp(α0) ≤ 0

νp(0) else

and νp(β − t(β)) ≥ 0 for any β, then divide by cases. We then proceed like for
Browkin I (Theorem 3.55) and write bn = cn pνp(bn). We have

∣b2i∣ = ∣c2i∣ <
p
2

∣b2i+1∣ = ∣c2i+1∣ ≤ pl (1− 1
pl )

where l = −νp(α2i+1). The case n = 2i + 1 here required working with the floor
function and is proved in [4, Lemma 10, page 2276]. Write αn = γn/p−νp(bn)βn with
γn, βn such that (with the same numbering)

(iv) the fraction is reduced, i.e. gcd(γn, βn) = 1

(v) γn, βn ∈Z

(vi) p ∤ γn and p ∤ βn

then for n = 2i we can substitute in the equation from the algorithm and get

γ2i+1

pl β2i+1
= α2i+1 =

1
α2i − b2i

= 1
γ2i

p0β2i
− c2i p0

β2iβ2i+1 pl = γ2i+1(γ2i − c2iβ2i)

implying by construction γ2i+1 = ±β2i and β2i+1 = ±p−l(γ2i − c2iβ2i). It follows

∣β2i+1∣ ≤ p−l(∣γ2i∣+ ∣c2i∣ ∣β2i∣) < p−l (∣γ2i∣+
p
2
∣β2i∣)

This is not enough for Browkin II: we need to differentiate even and odd
indices. If we go one step further,

γ2i+2

p0β2i+2
= α2i+2 =

1
α2i+1 − b2i+1

= 1
γ2i+1

pl β2i+1
− c2i+1 p−l

β2i+2β2i+1 pl = γ2i+2(γ2i+2 − c2i+2β2i+2)

therefore γ2i+2 = ±β2i+1 and β2i+1 = ±p−l(γ2i+1 − c2i+1β2i+1), from which we get

∣β2i+1∣ ≤ p−l(∣γ2i+1∣+ ∣c2i+1∣ ∣β2i+1∣)

≤ p−l ∣γ2i+1∣+ (1−
1
pl ) ∣β2i+1∣ = p−l ∣γ2i+1∣+ ∣β2i+1∣−

1
pl ∣γ2i+2∣
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implying

∣γ2i+2∣+ pl ∣β2i+2∣ ≤ ∣γ2i+1∣+ pl ∣β2i+1∣

< ∣γ2i+1∣+ pl (p−l ∣γ2i∣+ p−l p
2
∣β2i∣)

< ∣γ2i+1∣+ ∣γ2i∣+
p
2
∣β2i∣

In Theorem 3.55 we bounded both (γi)I and (βi)I at the same time. Here we
bound the subsequences of even and odd (γi)I instead. Substituting above we
also get ∣γ2i+3∣ = ∣β2i+2∣, moreover pl > p/2+ 1, therefore

(1+
p
2
) ∣γ2i+3∣+ ∣γ2i+2∣ < pl ∣γ2i+3∣+ ∣γ2i+2∣ = pl ∣β2i+2∣+ ∣γ2i+2∣

< ∣γ2i+1∣+ ∣γ2i∣+
p
2
∣β2i∣ = (1+

p
2
) ∣γ2i+1∣+ ∣γ2i∣

(p + 2)∣γ2i+3∣+ 2∣γ2i+2∣ = (p + 2)∣γ2i+1∣+ 2∣γ2i∣

The sequence ((p + 2)∣γ2i+1∣+ 2∣γ2i∣) is strictly decreasing, and due to (v) is
composed by natural numbers. This implies it ends, meaning that both (∣γi∣)
and (∣βi∣) = (∣γi+1∣) also end. The theorem follows.

Exactly like for Browkin I, where we had a promising result for the case of
finite local fields, the problem of satisfying (P2) is still open.
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Appendix A
Algorithms

All algorithms are implemented in SageMath, or Python3 if no data structure
from SageMath was required. All were tested on a two-core 11th Gen Intel(R)
Core(TM) i7-11370H 3.30GHz and 3.30 GHz.

A.1 Chapter 1

Listing A.1: Expansion for irrationals with the “floor algorithm”
1 def irrational_cf(x,n):
2 # x real number to be written as CF
3 # n number of steps
4 for i in range(1,n):
5 a = math.floor(x)
6 e = x − a
7 x = 1/e

A.2 Chapter 2

Listing A.2: Expansion for irrationals with the “floor algorithm”
1 def irrational_cf(x,n):
2 # x real number to be written as CF
3 # n number of steps
4 for i in range(1,n):
5 a = math.floor(x)
6 e = x − a
7 x = 1/e
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Listing A.3: Expansion for quadratic irrationals with Lagrange’s algorithm
1 def lagrange_cf(x,P,Q,D,n):
2 # x real number to be written as CF in the form (P+sqrtD)/Q
3 # n number of steps
4 for i in range(1,n):
5 a = math.floor(x)
6 P = a*Q−P
7 Q = int((D−P**2)/Q)
8 x = (P+math.sqrt(D))/Q

A.3 Chapter 3

The following are customised or directly taken from the algorithms openly
provided by Murru and Romeo [25] for a recent article [26].

Listing A.4: Schneider’s algorithm
1 def Schneider(x,lim):
2 part_num=[]
3 part_den=[]
4 b=x[0]
5 part_den.append(b)
6 e=(x−b).valuation()
7 a=p^e
8 part_num.append(a)
9 if x−b==0:

10 flag=0
11 else:
12 flag=1
13 i=0
14 while flag==1 and i<lim:
15 i=i+1
16 x=(p^e)/(x−b)
17 b=x[0]
18 part_den.append(b)
19 e=(x−b).valuation()
20 a=p^e
21 part_num.append(a)
22 return part_num,part_den

Listing A.5: Ruban’s floor function
1 def Ruban_floor(x):
2 v=x.valuation()
3 b=0
4 for i in range (v,1):
5 b=b+(x[i]*p^i)
6 return K(b)
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Listing A.6: Ruban’s algorithm
1 def Ruban(x,lim):
2 b=Ruban_floor(x)
3 exp=[Rational(b)]
4 if x−b==0:
5 flag=0
6 else:
7 flag=1
8 i=0
9 while flag==1 and i<lim:

10 i=i+1
11 x=1/(x−b)
12 b=Ruban_floor(x)
13 exp.append(Rational(b))
14 if x−b==0:
15 flag=0
16 else:
17 flag=1
18 return exp

Listing A.7: Browkin’s s function
1 def Browkin_s(x):
2 v=x.valuation()
3 b=0
4 t=x[v]
5 if x[v]>(p−1)/2:
6 t=−(p−x[v])
7 carry=1
8 else:
9 carry=0

10 b=b+(t*p^v)
11 for i in range (v+1,1):
12 t=x[i]+carry
13 if t>(p−1)/2:
14 t=−(p−t)
15 carry=1
16 else:
17 carry=0
18 b=b+(t*p^i)
19 return b
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Listing A.8: Browkin’s first algorithm
1 def BrowkinI(x,lim):
2 b=Browkin_s(x)
3 exp=[Rational(b)]
4 if x−b==0:
5 flag=0
6 else:
7 flag=1
8 i=0
9 while flag==1 and i<lim:

10 i=i+1
11 x=1/(x−b)
12 b=Browkin_s(x)
13 exp.append(Rational(b))
14 if x−b==0:
15 flag=0
16 else:
17 flag=1
18 return exp
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