

An aperitif on modern cryptography

Leonardo Errati

1. Against entropy...

Atbash cipher

Sheshak

shin-shin-kaf

"And after all of them, the king of **Sheshak** will drink it too."

(Book of Jeremiah, 25:26)

Atbash cipher

"And after all of them, the king of **Sheshak** will drink it too."

(Book of Jeremiah, 25:26)

$$\varphi_{atbash} \colon \mathbb{Z}_{22} \to \mathbb{Z}_{22}$$

$$x \mapsto (23 - x) \bmod 22$$

$$\begin{array}{ccc} A & \longrightarrow & Z \\ B & \longrightarrow & Y \\ C & \longrightarrow & X \end{array}$$

Atbash cipher

"And after all of them, the king of **Sheshak** will drink it too."

(Book of Jeremiah, 25:26)

$$\varphi_{atbash} \colon \mathbb{Z}_{22} \to \mathbb{Z}_{22}$$

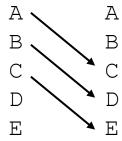
$$x \mapsto (23 - x) \bmod 22$$

$$\begin{array}{ccc} A & \longrightarrow & Z \\ B & \longrightarrow & Y \\ C & \longrightarrow & X \end{array}$$

Caesar cipher

$$\varphi_{caesar} \colon \mathbb{Z}_{26} \to \mathbb{Z}_{26}$$

$$x \mapsto (x+k) \bmod 26$$


$$H(K) = -\sum_{k \in K} P[k] \cdot \log_2 P[k]$$

message: ATTACKATDAWN

key:

ciphertext: DWWDFNDWGDZQ

$$H_{caesar} \simeq 4.7$$

Vigenere cipher

$$k = (k_0, ..., k_{t-1})$$

$$\varphi_{vigenere} \colon \mathbb{Z}_{26} \to \mathbb{Z}_{26}$$

$$x \mapsto (x_i + k_{i \mod t}) \mod 26$$

message: ATTACKATDAWN

key: keykeykey

ciphertext: KXRKGIKXBYAL

 $H_{vigenere} \simeq 4.7 \cdot t$

Vigenere cipher

$$k = (k_0, \dots, k_{t-1})$$

$$\varphi_{vigenere} \colon \mathbb{Z}_{26} \to \mathbb{Z}_{26}$$

$$x \mapsto (x_i + k_{i \mod t}) \mod 26$$

message: ATTACKATDAWN

key: keykeykeykey

ciphertext: KXRKGIKXBKAL

 $H_{vigenere} \simeq 4.7 \cdot t$

Vernam cipher

$$k = (k_0, \dots, k_{n-1})$$

$$\varphi_{vernam} \colon \mathbb{Z}_{26} \to \mathbb{Z}_{26}$$

$$x_i \mapsto (x_i + k_{i \bmod n}) \bmod 26$$

message: ATTACKATDAWN

key: aezklwgrmali

ciphertext: AXSKNGGKPOHV

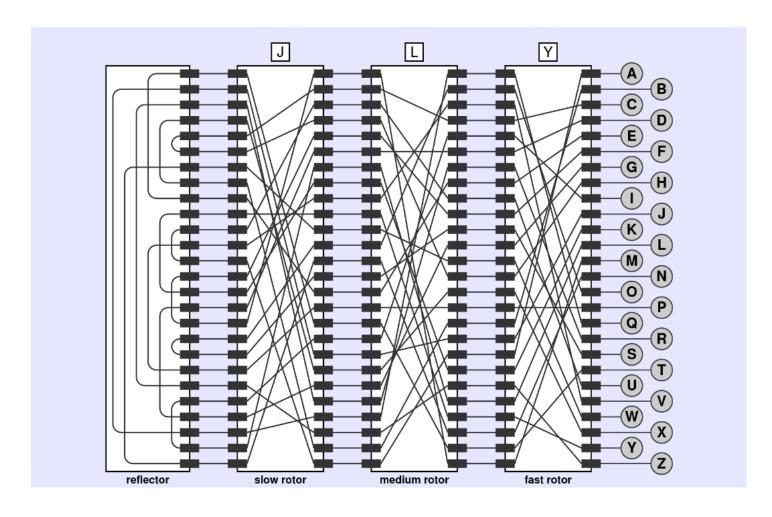
$$H_{vernam} \simeq 4.7 \cdot n$$

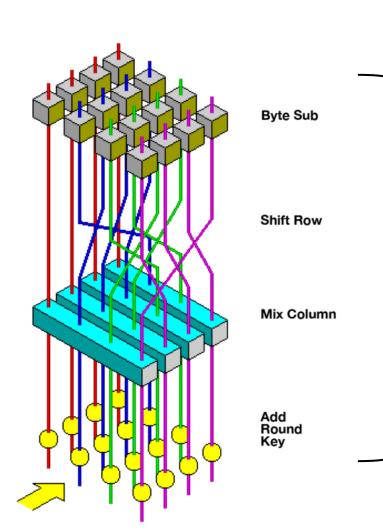
If k is uniformly distributed and independent on m this cipher is perfect, i.e.

$$P[M = m \mid C = c] = P[M = m]$$

Nomenclators

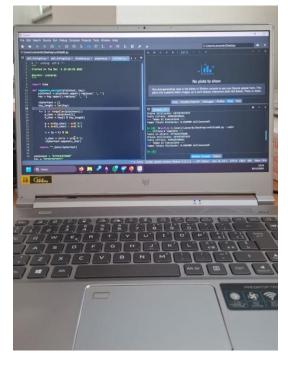
- 1. Against entropy...
- 2. Machines themselves...


Diskret cipher machine


Enigma cipher machine

$$H_{enigma} = 65 \text{ or } 67$$

AES cipher



 \times 10 (or 12 or 14)

 $H_{AES} = 128 \text{ or } 192 \text{ or } 256$

Good news

Vigenere

AES-128

me

15 minutes

6 to 8 hours

my laptop

0.00001 seconds

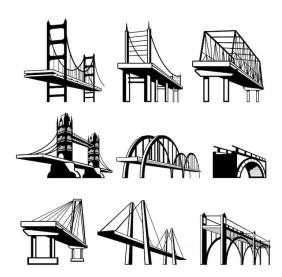
0.00015 seconds

^{*} benchmark on 128 characters

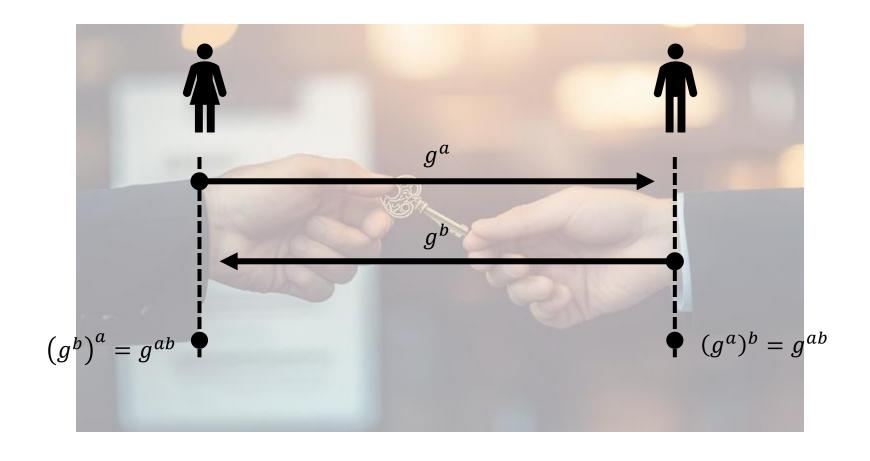
^{**} photos by Francesco Turiano

Bad news

- 1. Against entropy...
- 2. Machines themselves...
- 3. Contend in vain?


Security proofs

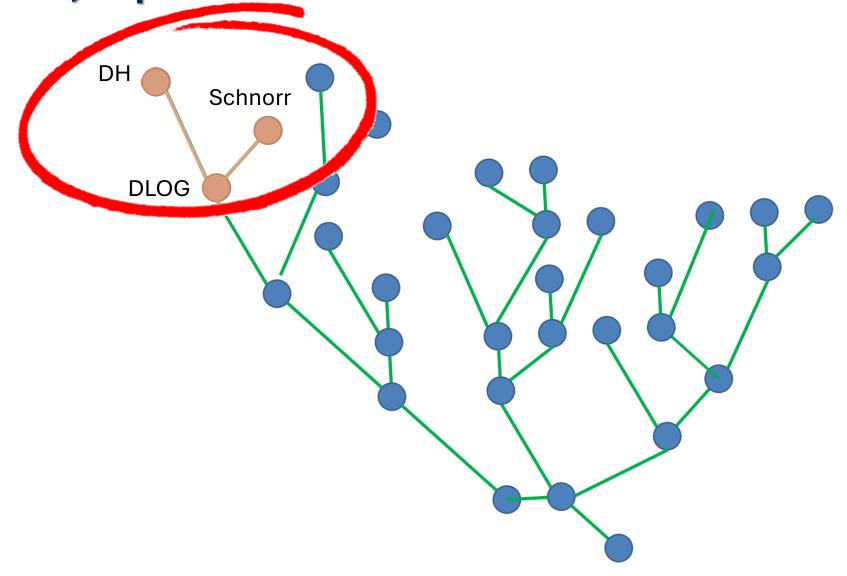
Security proofs



DH key exchange

DH key exchange

DH key exchange


If DLOG is hard, DH is secure.

Discrete LOGarithm: given $g^x \in G$, find x.

DH security: cannot recover a or b.

If DH is not secure, DLOG is not hard.

At last, hope

"Get in, fair reader, into the depths of Cryptography. Inspect the theory, view its foundations. Is not the very core made of fine mathematics?" - Gilgamesh

