

LINEAR EQUIVALENCE SIGNATURE SCHEME

Leonardo Errati 2025-06-20 LESSon 0:

LESS: THE ORIGINS

2017 - CALL FOR PROPOSALS

"NIST is soliciting proposals for post-quantum cryptosystems [...].
The goal of this process is to select a number of acceptable candidate cryptosystems for standardization."

2024: standardisation of

CRYSTALS-Dilithium

CRYSTALS-KYBER

SPHINCS+

2020 - LESS!

LESS is More: Code-Based Signatures without Syndromes

Jean-François Biasse¹, Giacomo Micheli¹, Edoardo Persichetti², and Paolo Santini^{2,3}

¹ University of South Florida, USA

² Florida Atlantic University, USA

³ Universitá Politecnica delle Marche, Italy

 $\{biasse, \ gmicheli\} @usf.edu, \ epersichetti @fau.edu, \ p.santini @pm.univpm.it \\$

"[...] we construct a signature scheme by exploring a new approach to the area.
[...] We show that practical instances of our protocol have the potential to outperform the state of the art on code-based signatures [...].

2022 - CALL FOR SIGNATURES

«NIST is calling for additional digital signature proposals to be considered in the PQC standardization process.»

Requirements:

- not based on structured lattices
- 2. performance advantage over **SPHINCS+**
- 3. if lattice-based, performance advantage over **CRYSTALS**

- **?** WHAT IS LINEAR EQUIVALENCE?
- ? WHAT IS LESS?
- ? IS LESS SECURE?

...WHAT IS A CODE? WHAT IS LINEAR EQUIVALENCE?

- ? WHAT IS LESS?
- ? IS LESS SECURE?

...WHAT IS A CODE?

WHAT IS LINEAR EQUIVALENCE?

2 WHAT IS LESS?

3 IS LESS SECURE?

LESSon 1:

LINEAR CODE EQUIVALENCE

LINEAR CODES

An (n, k)- **linear code** C is a k-dimensional subspace of F_q^n . LINEAR CODE The matrix G whose rows are a basis of C is its **generator matrix**.

All generator matrices are connected by some change of basis $S \in GL_k(q)$. For some S, $SG = (I_k \mid A)$. This is the **systematic form**.

LINEAR CODES

LINEAR CODE

An (n, k)- linear code C is a k-dimensional subspace of F_q^n . The matrix G whose rows are a basis of C is its **generator matrix**.

All generator matrices are connected by some change of basis $S \in GL_k(q)$. For some S, $SG = (I_k \mid A)$. This is the **systematic form**.

The dual of an (n,k)-linear code C is the (n,n-k)-linear code $C^{\perp} = \left\{ y \in F_q^n : \forall x \in C, yx^T = 0 \right\}$

Its generator matrix is the **parity check matrix** of C. If $G = (I_k \mid A)$, then $H = (-A^T \mid I_{n-k})$.

LINEAR CODES

Its generator matrix is the **parity check matrix** of C. If $G = (I_k \mid A)$, then $H = (-A^T \mid I_{n-k})$.

Permutation

$$\pi \in S_n$$

1 1 1

Linear isometry

$$\mu = (v; \pi) \in \underbrace{F_q^{*n} \rtimes S_n}_{M_n}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} v_3 x_3 & v_2 x_2 & v_1 \end{bmatrix}$$

Permutation Equivalence Problem (search)

```
given C, C'
find \pi \in S_n such that C' = \pi(C)
```

Linear Equivalence Problem (search)

```
given C, C'
find \mu \in M_n such that C' = \mu(C)
```

Permutation Equivalence Problem (search)

given G, G'find $P \in S_n$ such that G' = GP

Linear Equivalence Problem (search)

given G, G'find $Q \in M_n$ such that G' = GQ

Permutation Equivalence Problem (search)

given G, G'find $P \in S_n$ and $S \in GL_k(q)$ such that G' = SGP

Linear Equivalence Problem (search)

given G, G'find $Q \in M_n$ and $S \in GL_k(q)$ such that G' = SGQ

COMLEXITY OF LEP & PEP

LESSon 2:

DESIGNING THE SCHEME

I know Q and S such that G' = SGQ!

Prove it.

$$Q,S: G'=SGQ$$

$$Q,S: G'=SGQ$$

random $ch \in \{0, 1\}$

if
$$ch=0$$
 , $rsp=\overline{Q}$ if $ch=1$, $rsp=Q^{-1}\overline{Q}$

$$--rsp - - \rightarrow SF(G \cdot rsp) = com$$

$$SF(G' \cdot rsp) = com$$

$$Q,S: G'=SGQ$$

LESS: THE SIGNATURE

$$\begin{aligned} & \operatorname{random} \, \overline{Q} \in M_n \\ & \operatorname{com}_i = h(RREF(G\overline{Q})) \qquad i = 1, ..., t \\ & \operatorname{ch} = h(m, com) \\ & \operatorname{ch}_i = \operatorname{ch}[i] \qquad \qquad i = 1, ..., t \\ & \operatorname{for} \, i = 1, ..., t \\ & \operatorname{if} \, \operatorname{ch}_i = 0 \, , rsp_i = \overline{Q} \\ & \operatorname{if} \, \operatorname{ch}_i = 1, rsp_i = Q^{-1}\overline{Q} \\ & \sigma \leftarrow (com_1, ..., com_t, rsp_1, ..., rsp_t) \end{aligned}$$

soundness of Σ is $\frac{1}{2}$, iterate $t = \lambda$ times

LESSon 3:

SECURITY & ATTACKS

SECURITY PROOF

If Σ is a non-trivial canonical identification protocol secure against passive impersonation attacks, the signature scheme $FS(\Sigma)$ is UF-CMA secure,

$$Adv_{FS(\Sigma),A}^{uf-cma}(\lambda) \leq f(\lambda) \cdot Adv_{\Sigma,B}^{pa-imp}(\lambda) + g(\lambda))$$

FACT

This holds in **ROM** and is believed to hold for the **QROM**. The security of LESS is based on that of LEP.

uf-cma sec. of
$$FS(\Sigma)$$
 ——— pa-imp sec. of Σ ——— LEP-search

Type 1: solving PEP (e.g. SSA)

Type 1: solving PEP (e.g. SSA)

- if two codes are linearly equivalent, their closures are permutationally equivalent $cl(C)_a = \{c \otimes a : c \in C\}$ (a ordering of F_q^*)
- deteriorates with dimension of the hull of the code, but closures have maximal hull...

short codewords

Type 2: low-weight codeword finding (e.g. Prange)

- in general of exponential complexity
- structured variants deteriorate with increasing q
- Leon's algorithm: generate relations with L_1 , L_2 of weight-w codewords such that $L_1 = QL_2$
- NIST constraints the depth of quantum circuits, rendering quantum attacks (e.g. Prange + Grover) impractical

Type of equivalence	Algorithm	Complexity	Notes
Permutation	Leon	$Oig(C_{ISD}(q,n,k,d_{GV})\cdot 2\ln{(N_w)}ig)$	Preferable with small finite fields and large hulls.
	Beullens	$O\left(\frac{2L \cdot C_{ISD}(q, n, k, w)}{N_w \left(1 - 2^{L \log_2(1 - L/N_w)}\right)}\right)$	Preferable with large finite fields and large hulls. It may fail, when L is too small.
	SSA	$O\left(n^3 + n^2 q^h \log n\right)$	Efficient with small, non-trivial hulls
	BOS	$\begin{cases} O\left(n^{2.373}C_{WGI}(n)\right) & \text{if } h = 0\\ O\left(n^{2.373 + h + 1}C_{WGI}(n)\right) & \text{if } h > 0 \end{cases}$	Efficient with trivial hulls
Linear	Leon	$Oig(C_{ISD}(q,n,k,d_{GV})\cdot 2\ln{(N_w)}ig)$	Preferable with small finite fields and large hulls.
	Beullens	$O\left(\frac{2L \cdot C_{ISD}(q, n, k, w)}{N_w \left(1 - 2^{L \log_2(1 - L/N_w)}\right)}\right)$	Preferable with large finite fields and large hulls. It may fail, when L is too small.
	SSA	$\begin{cases} O\left(n^3 + n^2 q^h \log n\right) & \text{if } q < 5\\ O\left(n^3 + n^2 q^k \log n\right) & \text{if } q \ge 5 \end{cases}$	Efficient if $q < 5$ and the hull is trivial.

Table 2: Summary of techniques to solve the code equivalence problem

PARAMETERS

$$Adv_{FS(\Sigma),A}^{uf-cma}(\lambda) \leq f(\lambda) \cdot Adv_{\Sigma,B}^{pa-imp}(\lambda) + g(\lambda)$$

$$\leq f'(\lambda) \cdot Adv_C^{LEP}(\lambda) + g'(\lambda)$$

PARAMETERS

$$Adv_{FS(\Sigma),A}^{uf-cma}(\lambda) \leq f(\lambda) \cdot Adv_{\Sigma,B}^{pa-imp}(\lambda) + g(\lambda)$$

$$\leq f'(\lambda) \cdot Adv_C^{LEP}(\lambda) + g'(\lambda)$$

Consider $q \geq 5$ and random codes. We select n, k, q such that for any weight w = 1, ..., n finding lists of weight- w codewords L_1 and L_2 having non-empty $L_1 \cap L_2 Q$ takes at least time 2^{λ} .

INSTANTIATION

$$\frac{C_{ISD}(w)}{\sqrt{N(w)}} < 2^{\lambda}$$

FOR AN OLD VERSION OF LESS!

TII, PQsort

LESS team, LESS: Linear Equivalence Signature Scheme (v2), 2025

...WHAT IS A CODE?

WHAT IS LINEAR EQUIVALENCE?

2 WHAT IS LESS?

3 IS LESS SECURE?

LESSon 4:

UPGRADES!

LESSon 4:

UPGRADES!

... an overview

LESS-F

```
random \overline{Q} \in M_n
com_i = h(RREF(G\overline{Q})) i = 1, ..., t
ch = h(m, com)
                                        i = 1, \dots, t
ch_i = ch[i]
for i = 1, \dots, t
    if ch_i = 0, rsp_i = \overline{Q}
    if ch_i = 1, rsp_i = Q^{-1}\overline{Q}
\sigma \leftarrow (com_1, ..., com_t, rsp_1, ..., rsp_t)
```

idea: challenge is lighter for b=0, just send the seed used to generate \overline{Q}

Use a weight-restricted hash h.

- \bigcirc need more rounds t
- more efficient broadcasts

LESS-M

```
\begin{aligned} & \operatorname{random} \, \overline{Q} \in M_n \\ & \operatorname{com}_i = h(RREF(G\overline{Q})) \qquad i = 1, ..., t \end{aligned} \begin{aligned} & \operatorname{ch} = h(m, \operatorname{com}) \\ & \operatorname{ch}_i = \operatorname{ch}[(i-1)\ell, i\ell] \qquad \qquad i = 1, ..., t \end{aligned} \begin{aligned} & \operatorname{for} \, i = 1, ..., t \\ & \operatorname{if} \, \operatorname{ch}_i = 1, rsp_i = Q_{\operatorname{ch}_i}^{-1} \overline{Q} \end{aligned}
```

idea: increasing the challenge space reduces repetitions t

The ch_i become ℓ - bit challenges, interpreted as integers in $[0,2^{\ell}-1]$.

- 2^{ℓ} public keys Q_i (note: $Q_1 = I_n$)
- \bigcirc reduced rounds t

 $\sigma \leftarrow (com_1, ..., com_t, rsp_1, ..., rsp_t)$

LESS-FM

LESS-F + LESS-M

Optimization Criterion	LESS	Туре	n	k	q	l	t	ω	pk (kB)	sig (kB)	$\frac{pk + sig}{(kB)}$
Min. pk size	F	Mono	198	94	251	1	283	28	9.77	15.2	24.97
Min. sig size	FM	Perm	235	108	251	4	66	19	205.74	5.25	210.99
Min. pk + sig size	F	Perm	230	115	127	1	233	31	11.57	10.39	21.96
Beullens [14]	-	Mono	250	125	53	1	128	-	11	28	39

Table 7: Parameter sets for LESS-FM, for a security level of $\lambda = 128$ classical bits.

IS-LESS

idea: for b=1, just consider the action of $m{Q^{-1}ar{Q}}$ on an information set J

But the verifier needs to compute the same code.

coordinates in *J*: equal up to invertible matrix

$$\bar{G}_{J}^{'} = S\bar{G}_{J}$$

coordinates outside *J*: equal up to invertible and monomial matrices

$$\bar{G}_{[n]\backslash J}{}' = S\bar{G}_{[n]\backslash J}Z$$

solution: compute a «canonical form»

prover:
$$RREF(\bar{G}_J)$$
 w.r.t. J \longrightarrow $V = \bar{G}_J^{-1}\bar{G}_{[n]\setminus J}$ \longrightarrow scale & sort columns in lexicographical order $V' = \bar{G}_J^{-1}\bar{G}_{[n]\setminus J}Z$ \longrightarrow scale & sort columns in lexicographical order $V' = \bar{G}_J^{-1}\bar{G}_{[n]\setminus J}Z$ \longrightarrow scale & sort columns in lexicographical order

$$\star : G \times X \to X$$
$$(g, x) \mapsto x \star g$$

Cryptographic if:

- effective (efficient sampling, membership testing, evaluation)
- pseudorandom outputs
- one-way
- •

$$\star : G \times X \to X$$
$$((S; (\alpha, Q)), A) \mapsto S\alpha(GQ)$$

$$G = GL_k(q) \rtimes (Aut(F_q) \times M_n)$$

 $X \subset F_q^{k \times n}$ full-rank matrices

$$\star : G \times X \to X$$
$$((S; (\alpha, Q)), A) \mapsto S\alpha(GQ)$$

$$G = GL_k(q) \rtimes (Aut(F_q) \times M_n)$$
 monomial operations & change of basis $X \subset F_q^{k \times n}$ full-rank matrices code generators

$$\star : G \times X \to X$$
$$((S; (\alpha, Q)), A) \mapsto S\alpha(GQ)$$

$$G = GL_k(q) \rtimes (Aut(F_q) \times M_n)$$

 $X \subset F_q^{k \times n}$ full-rank matrices

monomial operations & change of basis code generators

CF-LESS

idea: proving that C and C lie in the same equivalence class reduces witness size

 $F \leq M_n$ subgroup such that any $\varphi \in F$ is decomposed as $(\varphi_k, \varphi_{n-k}) \in M_k \times M_{n-k}$ any isometry ψ is the permutation of a $\varphi \in F$

$$CF: F_q^{k \times (n-k)} \to F_q^{k \times (n-k)} \cup \{\bot\}$$
 canonical form **invariant over** F
$$CF(A) = CF(Q_{\varphi_k} \cdot A \cdot Q_{\varphi_{n-k}}) \text{ for any } \varphi \in F$$

$$G\overline{Q} \longrightarrow (I_k \mid A) \longrightarrow (I_k \mid CF(A))$$

only commit h(CF(A)), but we need to save the map $\pi: G\bar{Q} \to RREF(G\bar{Q})$ for the response

CF-LESS

idea: proving that C and C lie in the same equivalence class reduces witness size

only commit h(CF(A)), but we need to save the map $\pi: G\bar{Q} \to RREF(G\bar{Q})$ for the response

CF-LESS

TAKE AWAYS

• first code-based signature not using a SDP variation

TAKE AWAYS

- first code-based signature not using a SDP variation
- can adopt the framework of (non-commutative) group actions
 - identity-based signatures
 - ring signatures

TAKE AWAYS

- first code-based signature not using a SDP variation
- can adopt the framework of (non-commutative) group actions
 - identity-based signatures
 - ring signatures
 - threshold signatures??

NIST Internal Report NISTIR 8214C 2pd

NIST First Call for Multi-Party
Threshold Schemes

Second Public Draft

THANKS!

